Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Шамсутдинов Расим Адегамович

Должность: Директо Минискерство образования и науки Российской Федерации

Дафедераций в ное государственное бюджетное образовательное учреждение высшего уникальный программный ключ.

Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ»

Лениногорский филиал

Лустин А.Д.

Теория механизмов и машин

Методические рекомендации по выполнению курсовой работы для обучающихся по направлению 15.03.01 «Машиностроение» (для всех профилей)

(Методические рекомендации обсуждены и одобрены на заседании кафедры Машиностроения и информационных технологий 25.05.2022, протокол №9)

Лениногорск 2022

ОГЛАВЛЕНИЕ

Введение	3
1. Кинематический синтез механизма и определение	5
характерных точек положения ползуна	
2. Кинематический анализ механизма	6
2.1 Аналитический метод расчета	6
2.2 Графоаналитический метод определения кинематических	10
параметров	
2.2.1. Определение положений	10
2.2.2. Определение скоростей	11
2.2.3. Определение ускорений	14
3. Силовой анализ механизма	16
3.1 Силовой анализ без учёта сил трения, зависящих	17
от сил, действующих в кинематических парах	
3.1.1 Графоаналитический метод силового анализа механизма	17
3.1.2 Определение уравновешивающего момента	24
методом возможных перемещений	
3.1.3 Определение уравновешивающего момента с помощью	25
рычага Жуковского	
4. Расчёт на ЭВМ	27
4.1. Кинематический и силовой анализ КПМ без учета сил	28
трения, зависящих от сил, действующих кинематических парах	
4.1.1. Исходные данные	28
4.1.2. Результаты расчёта	29
4.1.3. Кинематический анализ	30
4.1.4. Определение силовых характеристик	30
4.2. Силовой анализ с учётом трения, зависящего от сил	33
в кинематических парах	
4.2.1. Методика расчёта	34
4.2.2. Расчёт на ПК по программе А2Т	37
5. Оформление курсовой работы	40
Заключение	40
Приложения	41
Список литературы	44

ВВЕДЕНИЕ

Задачи, которые должны быть решены, определяются техническим заданием с прилагаемыми к нему техническими условиями, определяющими необходимые параметры, которые должны быть выдержаны при проектировании.

В курсовом работе технические условия даются в задании, выдаваемом студенту. Ниже приводятся техническое задание на выполнение работы и технические условия в виде образца задания.

Техническое задание

- 1. Выполнить кинематический синтез схемы центрального кривошипно-ползунного механизма (КПМ) по заданным техническим условиям, включающим структурную схему механизма, и определить координаты характерных точек положения ползуна.
- 2. Провести кинематический анализ полученной схемы аналитическим и графоаналитическим методами.
- 3. Провести силовой анализ полученной схемы без учета составляющих сил трения, зависящих от величины усилий, действующих в кинематических парах, аналитическим и графоаналитическим методами.
- 4. Определить величину уравновешивающего момента с использованием принципа возможных перемещений аналитическим и графоаналитическим методами.

Кинематический и силовой анализ полученной схемы КПМ может быть проведен с использованием персонального компьютера (ПК) типа РС. Расчеты на ПК проводятся по готовым программам, составленным на алгоритмическом языке ФОРТРАН. В пособии даны указания по вводу исходных данных и расшифровки результатов расчета. В данном пособии силовой анализ КПМ с использованием ПК изложен в двух вариантах. В первом учитываются лишь постоянные составляющие сил трения, а во втором варианте — и силы трения, зависящие от усилий, действующих в кинематических парах.

При использовании ПК техническое задание дополняется следующими требованиями.

- 1. Построить годографы сил, действующих в кинематических парах, с учетом составляющих сил трения, зависящих от действующих в них усилий.
- 2. Построить графики законов движения 2-го и 3-го звеньев механизма в функции угла поворота начального звена.
- 3. Построить график уравновешивающего момента и сил, действующих в поступательной паре.

Образец задания

Механизм на рис. В1 представляет собой центральный КПМ, преобразующий вращательное движение кривошипа 1 в возвратно-поступательное движение ползуна 3.

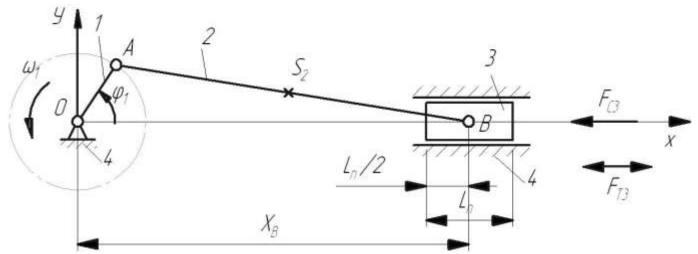


Рис. В1. Схема кривошипно-ползунного механизма

Механизм имеет следующие исходные данные:

- 1. Ход поршня $S_R = 0.35 \text{ м}$.
- 2. Длина поршня l_{II} =0,22 м.
- 3. Длина шатуна AB $l_2 = 1,4$ м. $l_{AS_2} = l_2/2$.
- 4. Частота вращения кривошипа $n_1 = 120$ об/мин.
- 5. Масса шатуна $m_2 = 7 \text{ кг.}$
- 6. Масса поршня $m_3 = 10.5 \text{ кг.}$
- 7. Перегрузка горизонтальная Π_{Γ} =1,0.
- 8. Постоянная сила трения в уплотнениях при движении поршня F_{T3} =60 H.
- 9. Сила сопротивления, действующая на поршень:

при $x_{B_{M}ax}$ 300 H.

при x_{Bcp} 300 H.

при x_{Bmin} 300 H.

- 10. Радиус цапфы r =0.02 м.
- 11. Коэффициент трения в цапфе f=0,25.
- 12. Коэффициент трения в поступательной кинематической паре f_{II} =0,2.

1.КИНЕМАТИЧЕСКИЙ СИНТЕЗ МЕХАНИЗМА И ОПРЕДЕЛЕНИЕ ХАРАКТЕРНЫХ ТОЧЕК ПОЛОЖЕНИЯ ПОЛЗУНА

По известным данным — ходу поршня S_B и длине шатуна l_2 - необходимо определить длину кривошипа l_1 , а также координаты двух крайних и среднего положений поршня $x_{B_{Max}}$, $x_{B_{Min}}$, $x_{B_{CP}}$.

Очевидно, что:

$$l_1 = S_B / 2 \; ;$$
 (1.1)

$$x_{B_{Max}} = l_1 + l_2;$$
 (1.2)

$$x_{B_{Min}} = l_2 - l_1; \tag{1.3}$$

$$x_{Bcp} = x_{B\min} + l_1 = l_2. {(1.4)}$$

Для заданного механизма искомые значения параметров будут следующими:

$$l_1 = 0.35/2 = 0.175 \text{ m};$$

 $x_{BMax} = (0.175 + 1.4) = 1.575 \text{ m};$
 $x_{BMin} = (1.4 - 0.175) = 1.225 \text{ m};$
 $x_{Bcp} = 1.4 \text{ m}.$

На рис. 1.1 представлена в масштабе схема механизма в восьми положениях через 45° изменения угла φ_1 .На схеме показаны траектории движения точек A, B, S_2 , где S_2 - центр тяжести звена 2.

За начальное положение механизма принято положение , при котором кривошип расположен вдоль положительной полуоси x , т.е. φ_1 =0.

На рис. 1.1 указана дополнительная точка F, расположенная на оси x, с помощью которой задается признак сборки механизма. Координата $x_F = +1$, если ползун слева от точки O кривошипа, и соответственно $x_F = -1$ при правом расположении ползуна относительно кривошипа.

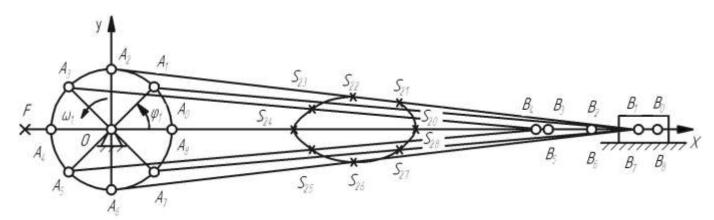


Рис. 1.1. Схема механизма в восьми положениях

2. КИНЕМАТИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМА

Структурный анализ КПМ по Ассуру позволяет представить механизм в виде совокупности первичного механизма (ведущее звено 1 и стойка 4) и двухповодковой группы (звенья 2 и 3). Кинематический и силовой анализ механизма проводят в соответствии с его структурным составом.

Кинематический анализ КПМ может быть выполнен либо аналитическим, либо графоаналитическим методом.

Аналитическим методом для одного расчетного положения механизма определяются положения , скорости и ускорения звеньев 2 и 3, а также точки S_2 .

Графоаналитическим методом для того же расчетного положения механизма определяются его кинематические параметры с помощью планов положений механизма, скоростей и ускорений.

Кинематические параметры, полученные двумя способами, не должны отличаться друг от друга более чем на (5...10)%.

Расчетное положение механизма следует выбирать из рабочего диапазона его работы. Рабочий ход ползуна определяется движением его в направлении от точки О, то есть для сборки механизма, определяемой как $x_F = -1$, рабочий ход соответствует диапазону перемещения ведущего звена от 180° до 360° , а для сборки $x_F = +1$ рабочий ход ползуна определяется диапазоном угла φ_1 от 0 до 180° . Таким образом, расчетным положениям механизма соответствуют углы $\varphi_1 = 225^\circ$ и $\varphi_1 = 315^\circ$ для $x_F = -1$ и углы $\varphi_1 = 45^\circ$ и $\varphi_1 = 135^\circ$ для $x_F = +1$.

2.1. Аналитический метод расчета

Схема механизма в масштабе в расчетном положении (φ_1 =315°) представлена на рис. 2.1, a.

Из технического задания известны: длины звеньев $l_1 = l_{OA}$, $l_2 = l_{AB}$, угловая скорость начального звена ω_1 =const, расположение центра тяжести звена2—точки S_2 .

Необходимо определить кинематические параметры звеньев 2 и 3 в функции положения ведущего звена $\varphi_1:\varphi_2(\varphi_1), \varphi_2(\varphi_1), \varepsilon_2(\varphi_1), x_B(\varphi_1), \psi_B(\varphi_1), a_B(\varphi_1)$, а также закон движения точки $S_2: x_{S2}(\varphi_1), y_{S2}(\varphi_1), \psi_{S2}(\varphi_1), a_{S2}(\varphi_1)$.

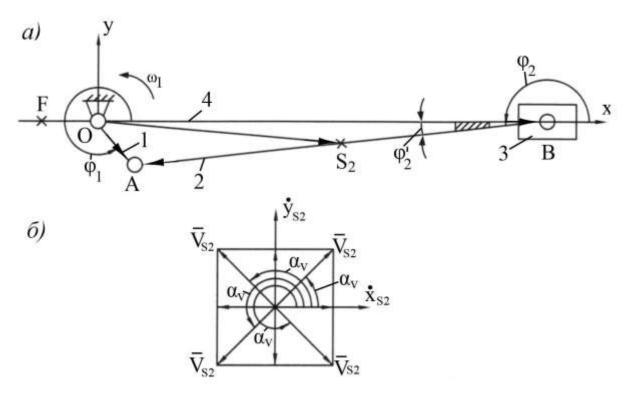


Рис. 2.1. Схема механизма в расчетном положении и определение положения вектора скорости

Для решения задачи воспользуемся методом замкнутых векторных контуров.

Для этого вдоль каждого звена, составляющего замкнутый контур, направляется вектор. Его угловое положение определяется углом, положительное направление которого отсчитывается в направлении против часовой стрелки от положительной полуоси абсцисс.

На рис. 2.1,a показаны направления векторов треугольника OBA.

Векторное уравнение замкнутого треугольника имеет вид

$$\bar{\ell}_{OB} + \bar{\ell}_{BA} = \bar{\ell}_{OA} \tag{2.1}$$

Спроектируем векторное уравнение на оси координат х и у

$$\begin{aligned}
x_B + \ell_2 \cos \varphi_2 &= \ell_1 \cos \varphi_{1,} \\
\ell_2 \sin \varphi_2 &= \ell_1 \sin \varphi_{1,}
\end{aligned} (2.2)$$

Из второго уравнения можно определить угол ϕ_2 . Для принятых расчетных положений механизма он будет

$$\varphi_2 = \varphi_2^1 \text{ при } x_F = +1,$$

$$\varphi_2 = \pi + \varphi_2^1 \text{ при } x_F = -1,$$
(2.3)

где φ_2^1 - острый угол, определяемый из треугольника OAB:

$$\varphi_2^1 = \arcsin\left(\frac{\ell_1}{\ell_2} \cdot \sin \varphi_1\right); \tag{2.4}$$

Из первого уравнения системы определяется координата точки В

$$x_{B} = -\ell_{2} \cos \varphi_{2} + \ell_{1} \cos \varphi_{1} = x_{B}(\varphi_{1}). \tag{2.5}$$

Для определения скоростей звеньев 2 и 3 продифференцируем систему двух уравнений по времени

$$\frac{dx_{B}}{dt} - \ell_{2} \sin \varphi_{2} \frac{d\varphi_{2}}{dt} = -\ell_{1} \sin \varphi_{1} \frac{d\varphi_{1}}{dt}$$

$$\ell_{2} \cos \varphi_{2} \frac{d\varphi_{2}}{dt} = \ell_{1} \cos \varphi_{1} \frac{d\varphi_{1}}{dt}$$
(2.6)

Или с учетом равенств

$$\frac{dx_{\scriptscriptstyle B}}{dt} = \upsilon_{\scriptscriptstyle B}, \quad \frac{d\varphi_{\scriptscriptstyle 2}}{dt} = \omega_{\scriptscriptstyle 2}, \quad \frac{d\varphi_{\scriptscriptstyle 1}}{dt} = \omega_{\scriptscriptstyle 1}$$
, где $\omega_{\scriptscriptstyle 1} = \frac{\pi n_{\scriptscriptstyle 1}}{30}$,

будем иметь систему

$$\begin{array}{l}
\upsilon_{B} - \ell_{2}\omega_{2}\sin\varphi_{2} = -\ell_{1}\omega_{1}\sin\varphi_{1}, \\
\ell_{2}\omega_{2}\cos\varphi_{2} = \ell_{1}\omega_{1}\cos\varphi_{1}
\end{array} \tag{2.7}$$

Из второго уравнения системы уравнений получим выражение для ω_2 , а из первого – для $\upsilon_{\scriptscriptstyle B}$:

$$\omega_2 = \omega_1 \frac{\ell_1 \cos \varphi_1}{\ell_2 \cos \varphi_2} = \omega_2(\varphi_1); \tag{2.8}$$

$$\upsilon_B = \ell_2 \omega_2 \sin \varphi_2 - \ell_1 \omega_1 \sin \varphi_1 = \upsilon_B(\varphi_1). \tag{2.9}$$

Повторное дифференцирование системы уравнений позволяет получить выражения для ускорений звеньев 2 и 3. С учетом равенств

$$\frac{dv_B}{dt} = a_B, \quad \frac{d\omega_2}{dt} = \varepsilon_2, \quad \frac{d\omega_1}{dt} = \varepsilon_1 = 0$$

эти выражения имеют вид

$$\varepsilon_2 = \frac{\ell_2 \omega_2^2 \sin \varphi_2 - \ell_1 \omega_1^2 \sin \varphi_1}{\ell_2 \cos \varphi_2} = \varepsilon_2(\varphi_1); \tag{2.10}$$

$$a_B = l_2 \varepsilon_2 \sin \varphi_2 + l_2 \omega_2^2 \cos \varphi_2 - l_1 \omega_1^2 \cos \varphi_2 = a_B(\varphi_1). \tag{2.11}$$

Численные значения кинематических параметров для расчетного положения заданного механизма будут следующими:

$$\phi_2^1 = \left| \arcsin \left(\frac{0,175}{1,4} \cdot \sin 315^\circ \right) \right| = 5,1^\circ;$$

$$\varphi_2 = 180^\circ + 5,1^\circ = 185,1^\circ$$
.

В радианной мере

$$\varphi_2 = 185,1^{\circ}/57,3 = 3,23$$
 рад;

$$x_B = -1.4\cos 185.1^{\circ} + 0.175\cos 315^{\circ} = 1.518 \text{ M};$$

$$\omega_1 = 3.14 * 120/30 = 12.56 1/c;$$

$$\omega_2 = 12,56 \frac{0,175 \cos 315^{\circ}}{1,4\cos 185,1^{\circ}} = -1,114 1/c;$$

$$v_B = 1.4(-1.114) \sin 185.1^{\circ} - 0.175*12.56 \sin 315^{\circ} = 1.692 \text{ m/c};$$

$$\varepsilon_2 = \frac{1,4(-1,114)^2 \sin 185,1^\circ - 0,175 * 12,56^2 \sin 315^\circ}{1,4 * \cos 185,1^\circ} = -13,89 \quad 1/c^2;$$

$$a_B = 1.4(-13.89)\sin 185.1^{\circ} + 1.4(-1.114)^2\cos 185.1^{\circ} - 0.175*12.56^2\cos 315^{\circ} = -19.517 \text{ m/c}^2$$
.

Для определения закона движения центра тяжести звена 2 – точки S₂ составим новый замкнутый векторный контур OS₂A (рис. 2.1). Векторное уравнение его имеет вид:

$$\bar{\ell}_{OS2} + \bar{\ell}_{S2A} = \bar{\ell}_{OA}. \tag{2.12}$$

Проектируя уравнение на оси координат, получим координаты точки S_2

$$x_{S2} = -\ell_{AS2} \cos \varphi_2 + \ell_1 \cos \varphi_1, y_{S2} = -\ell_{AS2} \sin \varphi_2 + \ell_1 \sin \varphi_1.$$
(2.13)

Первая и вторая производные от x_{s_2} и y_{s_2} по времени дадут значения составляющих скорости и ускорения точки S₂

$$x_{S2} = \ell_{AS2} \omega_2 \sin \varphi_2 - \ell_1 \omega_1 \sin \varphi_1; \tag{2.14}$$

$$y_{S2} = -\ell_{AS2}\omega_2 \cos \varphi_2 + \ell_1\omega_1 \cos \varphi_1; \tag{2.15}$$

$$x_{S2} = \ell_{AS2} \varepsilon_2 \sin \varphi_2 + \ell_{AS2} \omega_2^2 \cos \varphi_2 - \ell_1 \omega_1^2 \cos \varphi_1; \tag{2.16}$$

$$y_{S2} = -\ell_{AS2}\varepsilon_2\cos\varphi_2 + \ell_{AS2}\omega_2^2\sin\varphi_2 - \ell_1\omega_1^2\sin\varphi_1. \tag{2.17}$$

Значения полных векторов скорости и ускорения точки S₂ будут

$$V_{S2} = \sqrt{x_{S2} + y_{S2}},$$

$$a_{S2} = \sqrt{x_{S2} + y_{S2}}.$$
(2.18)
$$(2.19)$$

$$a_{S2} = \sqrt{x_{S2}^{\bullet \bullet^2} + y_{S2}^{\bullet \bullet^2}}.$$
 (2.19)

Положение вектора скорости относительно оси x определяется углом α_V (рис. 2.1,6):

$$\alpha_{V} = arctg \begin{pmatrix} \frac{\bullet}{y_{S2}} \\ \frac{\bullet}{x_{S2}} \end{pmatrix} \text{при} \quad x_{S2} > 0;$$

$$\alpha_{V} = arctg \begin{pmatrix} \frac{\bullet}{y_{S2}} \\ \frac{\bullet}{x_{S2}} \end{pmatrix} + \pi \quad \text{при} \quad x_{S2} < 0.$$
(2.20)

Аналогично определяется положение вектора ускорения:

$$\alpha_{\alpha} = acrtg \begin{pmatrix} \frac{\mathbf{v}}{y_{S2}} \\ \frac{\mathbf{v}}{x_{S2}} \end{pmatrix} \text{ при } x_{S2} > 0;$$

$$\alpha_{\alpha} = arctg \begin{pmatrix} \frac{\mathbf{v}}{y_{S2}} \\ \frac{\mathbf{v}}{x_{S2}} \end{pmatrix} + \pi \text{ при } x_{S2} < 0.$$
(2.21)

Подстановка в полученные выражения численных значений параметров заданного примера дает следующее результаты:

$$x_{S2} = -0.7\cos 185,1^{\circ} + 0.175\cos 315^{\circ} = 0.821 \text{ m};$$

 $y_{S2} = -0.7\sin 185,1^{\circ} + 0.175\sin 315^{\circ} = -0.062 \text{ m};$
• $x_{S2} = 0.7(-1.114)\sin 185,1^{\circ} - 0.175*12,56\sin 315^{\circ} = 1.623 \text{ m/c};$

$$\begin{split} & \overset{\bullet}{y}_{s2} = -0.7(-1.114)\cos 185.1^{\circ} + 0.175*12.56\cos 315^{\circ} = 0.774 \quad \text{m/c}; \\ & \overset{\bullet}{x}_{s2} = 0.7(-13.89)\sin 185.1^{\circ} + 0.7(-1.114)^{2}\cos 185.1^{\circ} - 0.175*12.56^{2}\cos 315^{\circ} = -19.52 \quad \text{m/c}^{2}; \\ & \overset{\bullet}{y}_{s2} = -0.7(-13.89)\cos 185.1^{\circ} + 0.7(-1.114)^{2}\sin 185.1^{\circ} - 0.175*12.56^{2}\sin 315^{\circ} = 9.757 \quad \text{m/c}^{2}; \\ & V_{s2} = \sqrt{1.623^{2} + 0.774^{2}} = 1.79 \quad \text{m/c}; \\ & a_{s2} = \sqrt{(-19.52)^{2} + 9.757^{2}} = 21.82 \quad \text{m/c}^{2}; \\ & \alpha_{V} = arctg \left(\frac{0.774}{1.623} \right) = 25.4^{\circ}; \\ & \alpha_{\alpha} = arctg \left(\frac{9.757}{-19.52} \right) + 180^{\circ} = -26.5^{\circ} + 180^{\circ} = 153.5^{\circ}. \end{split}$$

2.2.Графоаналитический метод определения кинематических параметров

Графические методы кинематического исследования механизмов обладают наглядностью, удобством контроля.

Графоаналитический метод определения кинематических параметров механизмов сводится к построению планов их положений, скоростей и ускорений.

2.2.1. Определение положений

План положений механизма — это графическое изображение взаимного расположения звеньев, соответствующее выбранному расчетному положению начального звена.

План положений механизма для угла $\varphi_1 = 315^{\circ}$ показан на рис. 2.1. Масштабный коэффициент плана положений k_1 определяется как

$$K_{\ell} = \frac{\ell_1}{OA}, \tag{2.22}$$

где ℓ_1 - действительная длина звена 1; $\overline{\rm OA}$ - длина отрезка, изображающего звено 1 на плане положений.

Тогда отрезок \overline{AB} , соответствующий длине звена 2, будет

$$\overline{AB} = \frac{\ell_2}{K_\ell}.$$

План положений позволяет определить угол ϕ_2 и координаты точек В и S_2 :

$$x_{B} = K_{\ell} \cdot \overline{OB}; x_{S2} = K_{\ell} \cdot \overline{x}_{OS2}; y_{S2} = K_{\ell} \cdot \overline{y}_{OS2}.$$
 (2.24)

Для рассматриваемого примера численные значения приведенных параметров будут следующие:

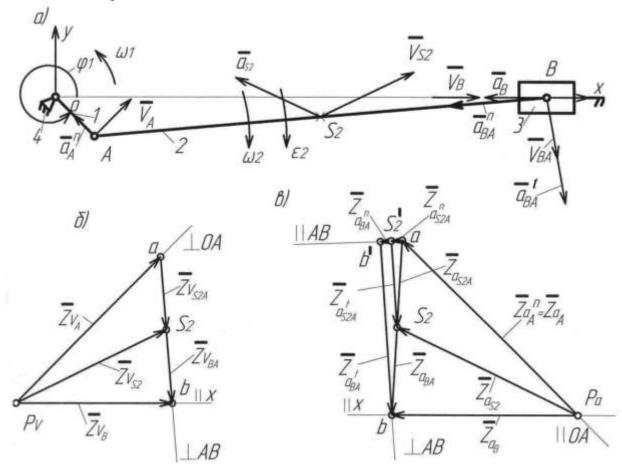
$$K_{\ell} = \frac{0,175}{17,5} = 0,01$$
 m/mm;

$$\overline{AB} = \frac{1.4}{0.01} = 140$$
 mm;

$$\varphi_2 = 185^o \; ; x_{\scriptscriptstyle B} = 0.01 \cdot 152 = 1.52 \; \; \text{m}; \; \; x_{\scriptscriptstyle S2} = 0.01 \cdot 82 = 0.82 \; \; \text{m}; \; \; y_{\scriptscriptstyle S2} = 0.01 \cdot (-6) = -0.06 \; \; \text{m}.$$

Значения x_B , φ_2 , x_{S2} , y_{S2} с большой степенью точности приближены к значениям, полученным аналитическим способом.

2.2.2. Определение скоростей


Метод основан на графическом решении векторных уравнений движения. Для построения плана скоростей должна быть известна кинематическая схема механизма, построенная в масштабе (рис. 2.2, a), и задан закон движения начального звена (например, $\omega_1 = \text{const}$).

Требуется найти линейные скорости точек A , B и S_2 , а также угловую скорость звена 2.

Построение плана скоростей начинается с определения скорости точки А кривошипа

$$v_{A} = \omega_{1} \ell_{1}. \tag{2.25}$$

Вектор скорости точки А направлен перпендикулярно кривошипу ОА в направлении его вращения.

Рис.2.2. Схема механизма, планы скоростей и ускорений

Скорость точки В, принадлежащей звену 2, можно представить как векторную сумму скоростей переносного $\overline{\upsilon_{Be}}$ и относительного $\overline{\upsilon_{Br}}$ движений

$$\overline{\upsilon}_B = \overline{\upsilon}_{Be} + \overline{\upsilon}_{Br}. \tag{2.26}$$

Переносным движением звена 2 является поступательное движение его со скоростью точки А

$$\upsilon_{Be} = \upsilon_A$$
,

а относительным — вращательное движение звена 2 вокруг точки А. Если обозначить относительную скорость через $\upsilon_{\text{ва}}$, то

$$\overline{\upsilon}_{\mathrm{Br}} = \overline{\upsilon}_{\mathrm{BA}}.$$

Окончательно векторное уравнение для скорости точки В будет иметь вид

$$\frac{\overline{\upsilon}_{B}}{\underline{\upsilon}_{A}} = \underline{\overline{\upsilon}_{A}} + \underline{\upsilon}_{BA}.$$

$$// x \perp OA \perp BA$$
(2.27)

В этом уравнении векторы скоростей, известные по величине и направлению, подчеркнуты двумя чертами, а известные лишь по направлению – одной чертой.

Для определения указанных неизвестных величин строим план скоростей с выбранным масштабным коэффициентом K_{ν}

$$K_{\nu} = \frac{\nu_{A}}{\overline{Z}\nu_{A}} \left[\frac{\frac{M}{c}}{MM} \right]. \tag{2.28}$$

Здесь

 $\overline{Z}_{\mathcal{V}_{\mathrm{A}}}$ - длина отрезка, изображающего на плане скорость $\overline{\mathcal{V}_{\mathrm{A}}}$.

Из произвольной точки полюса плана скоростей p_{ν} (рис. 2.2, б) проведем вектор \bar{Z}_{ν_A} , перпендикулярный кривошипу ОА, соответствующий на плане скоростей абсолютной скорости $\bar{\nu}_A$. Из конца вектора \bar{Z}_{ν_A} (точка a) проводим линию в направлении относительной скорости $\bar{\nu}_{BA}$, перпендикулярную АВ, а из полюса p_{ν} - линию в направлении скорости $\bar{\nu}_B$, параллельную ОВ. В пересечении указанных линий находим точку b. Вектор \bar{Z}_{ν_B} изображает скорость $\bar{\nu}_B$ точки B, а вектор $\bar{Z}_{\nu_{BA}}$ - скорость $\bar{\nu}_{BA}$. Величины действительных скоростей определяют по формулам

$$\begin{vmatrix} \mathbf{v}_{\mathrm{B}} \end{vmatrix} = \overline{Z}\mathbf{v}_{\mathrm{B}} \cdot \mathbf{K}_{\mathrm{v}};$$
$$\mathbf{v}_{\mathrm{BA}} = \overline{Z}\mathbf{v}_{\mathrm{BA}} \cdot \mathbf{K}_{\mathrm{v}}.$$

Направление скорости $\upsilon_{\rm B}$ определяется при параллельном переносе вектора $\bar{\rm Z}\upsilon_{\rm B}$ в точку B механизма (рис. 2.2, a). Т.к. вектор $\bar{\upsilon}_{\rm B}$ в точке B механизма направлен в сторону положительной полуоси x, знак скорости $\upsilon_{\rm B}$ будет положительным.

Модуль угловой скорости звена 2 будет

$$\left|\omega_{2}\right| = \frac{\upsilon_{BA}}{\ell_{2}}.\tag{2.29}$$

Направление ω_2 находится по вектору $\overline{\upsilon_{\text{BA}}}$. На рис. 2.2, $a\ \omega_2$ направлена по часовой стрелке.

Скорость точки S2 определяется с помощью векторного уравнения:

$$\overline{\upsilon}_{S2} = \underline{\overline{\upsilon}_{A}} + \underline{\overline{\upsilon}_{S2A}} \\
\perp OA \perp AS_{2}$$
(2.30)

Здесь скорость относительного движения точки S_2 υ_{S2A} находится методом пропорционального деления отрезка \emph{ab} на плане скоростей, изображающего относительную скорость υ_{BA}

$$\overline{as}_2 = \overline{as} \left(\frac{AS_2}{AB} \right). \tag{2.31}$$

Действительная скорость $\upsilon_{\scriptscriptstyle S2A}$ определяется как

$$v_{s2} = \overline{Z}v_{s2} \cdot K_v. \tag{2.32}$$

Для рассматриваемого примера численное значение скорости v_A равно $v_A = 12,56*0,175=2,198$ м/с $\approx 2,2$ м/с.

Если на плане скоростей (рис.2.2,б) известную скорость \bar{v}_A изобразить отрезком длиной 66 мм, то получим:

$$K_{\nu} = \frac{2.2}{66} = \frac{1}{30} \left[\frac{M/c}{MM} \right]; \quad \overline{Z}_{\nu_{B}} = 51 \text{ mm}; \quad \overline{Z}_{\nu_{BA}} = 47 \text{ mm};$$

$$|\overline{\nu}_B| = 51 \cdot \frac{1}{30} = 1,7 \text{ M/c}.$$

Так как вектор $\overset{-}{\upsilon}_B$ в точке В механизма направлен в сторону положительной полуоси x , знак будет положительным:

$$v_{\rm B} = 1.7 \, \text{M/c}$$

$$\upsilon_{BA} = 47 \cdot \frac{1}{30} = 1,56 \text{ M/c}; \qquad \left| \omega_2 \right| = \frac{1,56}{1,4} = 1,119 \text{ } c^{-1}.$$

Угловая скорость ω_2 направлена по часовой стрелке, поэтому имеет знак «минус»:

$$\omega_2 = -1.119 \ 1/c;$$

$$a_{S2} = \frac{1}{2}ae = \frac{1}{2} \cdot 47 = 23.5 \text{ MM}; \qquad v_{S2} = 55 \cdot \frac{1}{30} = 1.83 \text{ M/c}.$$

Сравнение с результатами аналитического метода расчета дает ошибку не более 3%.

2.2.3. Определение ускорений

Построение плана ускорений позволяет определить линейные ускорения точек A, B и S_2 , а также угловое ускорение звена 2.

Ускорение точки А кривошипа складывается из суммы нормальной $\overset{-n}{a_A}$ и $\overset{-t}{a_A}$ составляющих

$$\overline{a}_A = \overline{a}_A^n + \overline{a}_A^t, \tag{2.33}$$

где $a_A^n = \ell_1 \omega_1^2; a_A^t = \ell_1 \varepsilon_1.$

Нормальные составляющие ускорений всегда направлены по радиусу к центру вращения, а тангенциальные составляющие перпендикулярны радиусу и направлены в сторону углового ускорения.

Ускорение точки В, принадлежащей звену 2, можно представить в виде векторной суммы ускорений переносного \bar{a}_{Be} и относительного \bar{a}_{Br} движений

$$\bar{a}_{B} = \bar{a}_{Be} + \bar{a}_{Br}, \tag{2.34}$$

где $a_{Be} = a_A; a_{Br} = a_{BA}.$

Относительное ускорение точки В также состоит из двух составляющих

$$\bar{a}_{BA} = \bar{a}_{BA}^{n} + \bar{a}_{BA}^{t}, \tag{2.35}$$

где $a_{BA}^n = \ell_2 \omega_2^2; a_{BA}^t = \ell_2 \varepsilon_2.$

C учетом приведенных выше формул и в случае $\frac{d\omega_1}{dt} = \varepsilon_1 = 0$ окончательно

получим
$$\underline{\underline{a}_B} = \underline{\underline{a}_A}^{-n} + \underline{\underline{a}_{BA}}^{-n} + \underline{\underline{a}_{BA}}^{-t}$$
 (2.36)

$$//x//OA//AB\perp BA$$

Как и раньше, одной чертой подчеркнуты векторы, известные только по направлению, а полностью известные векторы подчеркнуты двумя чертами.

Построение плана ускорений начинаем с выбора масштабного коэффициента плана ускорений K_a по любой известной величине – либо по a_A^n , либо по a_{BA}^n . Пусть

$$K_a = \frac{a_A^n}{\overline{Z}a_A^n},\tag{2.37}$$

где $\overline{Z}a_A^n$ - длина отрезка, изображающего ускорение a_A^n .

Тогда величина отрезка $\overline{Z}a_{BA}^n$, изображающего известное ускорение a_{BA}^n , будет

$$\overline{Z}a_{BA}^n = \frac{a_{BA}^n}{K_a}. (2.38)$$

Из произвольной точки полюса плана ускорений p_a (рис. 2.2, ϵ) откладываем отрезок $\overline{Z}a_A^n$ в направлении к центру вращения звена 1 — точке О. Так как $\overline{a}_A^t=0$ и, следовательно, $\overline{a}_A=\overline{a}_A^n$, отрезок $\overline{p_a}a$ изображает полное ускорение точки А.

Из конца отрезка $p_a a$ параллельно ВА по направлению к центру относительного вращения звена 2 — точке А откладываем отрезок $\overline{Z}a_{BA}^n$ и из его конца перпендикулярно АВ проводим линию действия тангенциальной составляющей относительного ускорения a_{BA}^t . Затем из полюса плана p_a параллельно ОВ проводим линию действия абсолютного ускорения точки В. Точка b, полученная на пересечении этих линий, определяет концы отрезков $\overline{Z}a_{BA}^t$ и $\overline{Z}a_B = \overline{p}_a b$, изображающих соответствующие ускорения. Величины этих ускорений будут

$$a_{BA}^t = K_a \cdot \overline{Z} a_{BA}^t$$
 и $|a_B| = K_a \cdot \overline{Z} a_B$.

Так как вектор ускорения \bar{a}_B направлен в сторону отрицательной полуоси x, то знак ускорения \bar{a}_B будет отрицательным.

Соединив прямой точки a и b плана ускорений, получим отрезок \overline{ab} , изображающий полное относительное ускорение \overline{a}_{BA} . Его величина будет

$$a_{BA} = K_a \cdot a \epsilon$$
.

Величина углового ускорения звена 2 определяется из уравнения

$$\left|\varepsilon_{2}\right| = \frac{a_{B'A}}{l_{2}}.\tag{2.39}$$

Перенеся вектор ускорения \bar{a}_{BA}^{t} в точку В механизма и рассматривая движение точки В относительно точки А, можно определить направление ускорения ϵ_{2}

Ускорение точки S₂ определяется из векторного уравнения

$$\overline{a}_{S2} = \underline{\underline{a}_A} + \underline{\overline{a}_{S2A}}.$$

$$\frac{\overline{a}_{S2} - \underline{a}_{A}}{\overline{a}_{BA}}.$$
(2.40)

Величина относительного ускорения $a_{{\rm S2A}}$ находится аналогично скорости $\upsilon_{{\rm S2A}}$ - методом пропорционального деления отрезка ab, изображающего относительное ускорение $a_{{\scriptscriptstyle RA}}$

$$\overline{a}_{S2A} = \overline{a}_{BA} \left(\frac{AS_2}{AB} \right) \tag{2.41}$$

или на рис. 2.2, в

$$\overline{a}_{S2} = \overline{ab} \left(\frac{AS_2}{AB} \right).$$

Полное ускорение точки S2 определяется как

$$a_{S2} = \overline{Z}a_{S2} \cdot K_a. \tag{2.42}$$

Для рассматриваемого примера расчеты дают следующие значения параметров: $a_A = a_A^n = 0.175 \cdot 12,56^2 = 27,6 \quad m/c^2;$

$$a_{BA}^{n} = 1,4(-1,114)^{2} = 1,72 \quad m/c^{2}.$$

Возьмем отрезок $\overline{Z}a_{A}^{n}=82,8$ мм, тогда масштабный коэффициент будет равен

$$\frac{1}{3} \frac{M/c^2}{MM}$$
 $(\kappa_a = \frac{27.6}{82.8} = \frac{1}{3} \frac{M/c^2}{MM}).$

Отрезок, изображающий известное ускорение a_{RA}^n :

$$\overline{Z}a_{BA}^n = \frac{1,72}{1/3} = 5,2$$
 мм.

Искомые ускорения будут:

$$|a_B| = 1/3.58 = 19.3 \text{ m/c}^2$$
;

$$a_{BA}^{t} = 1/3.58 = 19,3 \text{ m/c}^{2};$$

$$\left| \varepsilon_2 \right| = \frac{19.3}{1.4} = 13.8 \ 1/c^2.$$

Так как вектор ускорения $\overline{a_B}$ направлен в сторону отрицательной полуоси x, то

$$a_B = -19.3 \text{ } m/c^2.$$

Угловое ускорение ε_2 направлено по часовой стрелке, поэтому

$$\varepsilon_2 = -13.8 \ 1/c^2;$$

$$aS_2 = \frac{1}{2}as = \frac{1}{2} \cdot 59 = 29,5$$
 мм;

$$a_{S_2} = 66 \cdot 1/3 = 22 \text{ } m/c^2.$$

Сравнение результатов расчета со значениями, полученными аналитическим методом, дает максимальную ошибку не более 3%.

3. СИЛОВОЙ АНАЛИЗ МЕХАНИЗМА

Задачей силового анализа рычажных механизмов является определение сил, действующих в кинематических парах механизма, уравновешивающей силы или уравновешивающего момента, которые надо приложить к ведущему звену для обеспечения требуемого закона движения ведомого звена.

Силовой расчет механизма в дальнейшем позволит решить следующие инженерные задачи: 1) расчет звеньев механизма на прочность, жесткость, износоустойчивость и т.п.; 2) расчет подвижных соединений звеньев на долговечность; 3) выбор мощности двигателя и т.д.

При проектировании механизма силовой анализ выполняется в два этапа. На первом этапе определяют силы в кинематических парах без учета сил трения, зависящих от усилий в кинематических парах, учитывая лишь постоянные составляющие, заданные в технических условиях.

Используя результаты первого этапа, определяют силы и моменты трения, зависящие от сил реакций, и на втором этапе с их учетом определяют истинные реакции в кинематических парах.

При использовании кинетостатического метода в уравнения равновесия, называемые уравнениями кинетостатики, входят не только внешние силы и моменты, силы в кинематических парах, но и силы и моменты сил инерции.

Для кинетостатической определимости плоский механизм не должен иметь избыточных связей.

Силовой расчет механизма проводят в соответствии с его структурным составом, т.е. расчет начинают со структурной группы, наиболее удаленной от начального звена, и заканчивают расчетом первичного механизма.

3.1 Силовой анализ без учета сил трения, зависящих от сил, действующих в кинематических парах.

Для первого этапа силового анализа проведем расчет несколькими методами:

- 1) для расчетного положения механизма графоаналитическим методом определим силы во всех кинематических парах и уравновешивающий момент, который необходимо приложить к начальному зевну;
- 2) основываясь на методе возможных перемещений, определим аналитическим и графоаналитическим способами уравновешивающий момент для того же расчетного положения механизма.

3.1.1. Графоаналитический метод силового анализа механизма

Для расчетного положения механизма необходимо определить все силы и моменты сил, действующие на звенья механизма.

1. Силы тяжести

$$G_i = -m_i g \quad (i=2,3).$$
 (3.1)

2. Силы от действия горизонтальной и вертикальной перегрузок:

$$F_{\Pi\Gamma i} = -m_i g \Pi_{\Gamma} , F_{\Pi B i} = -m_i g \Pi_{B}. \tag{3.2}$$

3. Главные векторы и главные моменты инерционных сил, к которым приводятся силы инерции, действующие на каждое звено механизма. Для звеньев 2 и 3

$$\overline{F}_{u2} = -m_2 \overline{a}_{S2}; \overline{M}_{u2} = -\overline{J}_{S2} \overline{\varepsilon}_2; \ \overline{F}_{u3} = -m_3 \overline{a}_{S3} = -m_3 \overline{a}_B, \tag{3.3}$$

где m_2 и m_3 -массы звеньев 2 и 3; \overline{a}_{S2} и \overline{a}_{S3} -ускорения центров масс звеньев (для звена 3 точка S_3 совпадают с точкой B); ε_2 -угловое ускорение звена 2; J_{S2} -момент инерции масс звена 2 относительно оси, проходящей через центр масс и перпендикулярной плоскости движения звена, который определяется по формуле

$$J_{s2} = 0.12m_2l_2^2. (3.4)$$

4. Сила трения на ползуне

$$F_{T3} = -|F_{T3}|sign(\upsilon_B), \tag{3.5}$$

где
$$sign(\upsilon_B) = \frac{\upsilon_B}{|\upsilon_B|}$$
.

5. Сила сопротивления на ползуне:

для нерабочего хода ползуна $F_{C3} = 0$;

для рабочего хода
$$F_{C3} = -|F_{C3}| sign(v_B)$$
. (3.6)

Здесь $|F_{C3}|$ -модуль силы сопротивления, соответствующий расчетному положению механизма. Для определения значения этой силы необходимо построить приближенный график параболической зависимости силы сопротивления от координаты точки В $F_{C3}(x_B)$, используя три значения функции F_{C3} для трех значений аргумента x_B , данные в задании.

График зависимости $F_{C3}(x_R)$ представлен на рис.3.1.

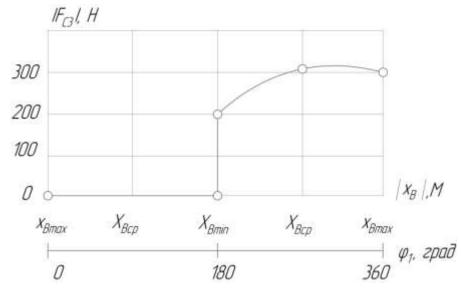


Рис. 3.1. Зависимость силы сопротивления от положения ползуна

Знак «минус» везде учитывает направление силового параметра, противоположное направлению соответствующего кинематического параметра.

Численные значения сил и моментов сил для расчетного положения рассматриваемого механизма ($\varphi_1 = 315^\circ$) будут следующими:

$$\begin{split} G_2 = -7 \cdot 9,8 = -68,6 \ H; & G_3 = -10,5 \cdot 9,8 = -102,9 \ H; \\ F_{\Pi \Gamma 2} = -68,6 \ H; & F_{\Pi \Gamma 3} = -102,9 \ H; & F_{\Pi B2} = F_{\Pi B3} = 0; \\ F_{u2} = -7 \cdot 21,82 = -152,8 \ H; & F_{u3} = -10,5 \cdot (-19,52) = 204,8 \ H; \\ J_{S2} = 0,12 \cdot 7 \cdot 1,4^2 = 1,65 \ \kappa \varepsilon \cdot m^2; & M_{u2} = -1,65(-13,89) = 22,87 \ H \cdot m; \\ F_{T3} = -60 \ H; & F_{C3} = -310 \ H \text{ (см.рис.} 3.1); & (F_{T3} + F_{C3}) = -370 \ H. \end{split}$$

Малыми величинами, которые составляют не более (5...10)% от максимальной известной силы, можно пренебречь.

Силовой расчет механизма следует начать с двухповодковой группы, состоящей из звеньев 2 и 3. Схема структурной группы, изображенной в масштабе со всеми приложенными силами, представлена на рис. 3.2,а. Определению подлежат силы реакции F_{21} , F_{34} и F_{23} .

Задача нахождения сил и плеча h_{34} является статически определимой задачей, поскольку для группы из двух звеньев можно составить 6 уравнений равновесия, и определению подлежат 6 неизвестных - величины и направления сил реакций во вращательных кинематических парах A и B, величина и точка приложения силы F_{34} в поступательной кинематической паре ползун — неподвижные направляющие ползуна.

Для удобства проведения расчета главный момент сил инерции можно заменить парой сил, приложенных в точках А и В звена 2. Значения сил будут

$$F_{Mu2} = M_{u2} / \ell_2 = \frac{22,87}{1,4} = 16,3 H.$$

При графоаналитическом методе расчета следует неизвестную силу реакции F_{21} предоставить в виде двух составляющих: нормальной F_{21}^n , направленной вдоль звена, и касательной F_{21}^t , направленной перпендикулярно звену.

Все неизвестные силы реакции на рис. 3.2,a направлены произвольно. Если из расчета какая-либо сила получится со знаком «минус», это значит, что ее действительное направление противоположно принятому.

Для системы сил, действующих на звено 2, составим уравнение моментов относительно точки В

$$\sum_{2} M_{\rm B} = 0. ag{3.7}$$

Если условиться, что моменты, направленные против часовой стрелки, считаются положительными, а по часовой стрелке - отрицательными, то уравнение моментов будет иметь вид

$$M_B(G_2) + M_B(F_{u2}) - M_B(F_{III'2}) + M_B(F_{Mu2}) + M_B(F_{21}^t) = 0$$
,

где неизвестная составляющая силы F_{21}^t направлена произвольно — вниз от точки A .

В развернутом виде уравнение перепишется как

$$G_2 h_{G2} + F_{u2} h_{u2} - F_{III} \cdot h_{II} + F_{Mu2} \cdot AB + F_{21}^t \cdot AB = 0$$
.

Откуда неизвестная сила F_{21}^t будет

$$F_{21}^{t} = \frac{-G_2 h_{G2} - F_{u2} h_{u2} + F_{\Pi \Gamma 2} \cdot h_{\Gamma 2} - F_{Mu2} \cdot AB}{AB}$$
 (3.8)

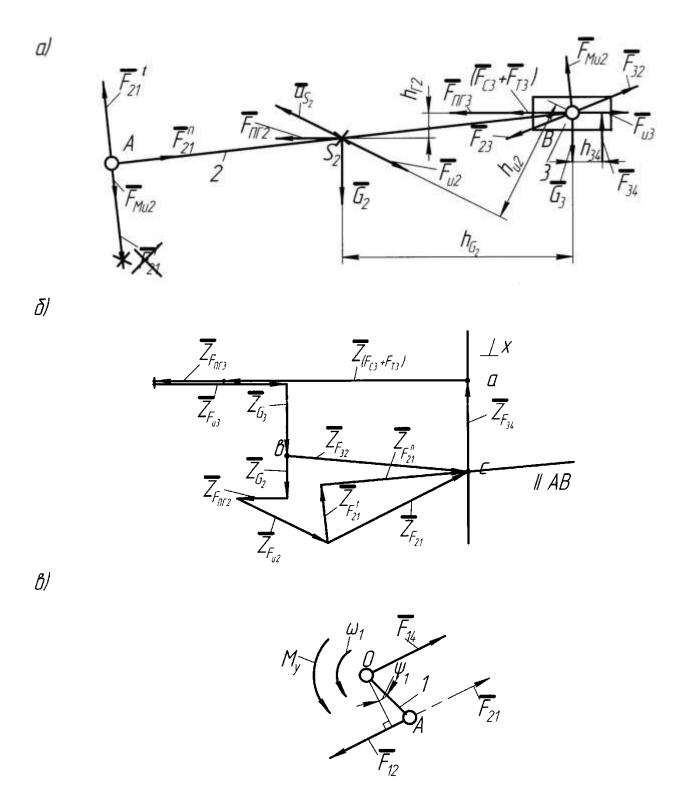


Рис.3.2. Схема к кинетостатическому расчету двухповодковой группы, ведущего звена и план сил

Здесь через h с индексами обозначены плечи соответствующих сил относительно точки В. Как видно из формулы для F_{21}^t , плечи сил могут быть взяты непосредственно из рисунка группы (рис.3.2, a), невзирая на масштаб его построения.

Следует отметить, что при определении численных значений сил реакций, как F_{21}^t , так и других, все силы следует брать по модулю, так как знак силы указывает на ее действительное направление, а на схеме механизма знак силы был учтен при изображении ее на рисунке.

Численное значение касательной составляющей F_{21}^{t} для рассматриваемого примера будет

$$F_{21}^{t} = \frac{-68,6 \cdot 69 - 152,8 \cdot 35 + 68,6 \cdot 7 - 16,3 \cdot 140}{140} = -84,9 H.$$

Знак «минус» означает, что сила F_{21}^{t} должна быть направлена в противоположную от выбранного направления сторону, т.е. от точки A вверх, что показано на рис. 3.2,a.

Для определения величин нормальной составляющей силы в точке А \overline{F}_{21}^n и силы \overline{F}_{34} составим векторное уравнение равновесия структурной группы, сгруппировав силы по звеньям:

$$\sum_{2,3} \vec{F} = 0. ag{3.9}$$

Или

$$\begin{split} & \underline{\overline{F}_{34}} + (\underline{\overline{F}_{C3}} + \underline{\overline{F}_{T3}}) + \underline{\overline{F}_{III'3}} + \underline{\overline{F}_{u3}} + \underline{\overline{G}_3} + \underline{\overline{G}_2} + \underline{\overline{F}_{III'2}} + \underline{\overline{F}_{u2}} + \underline{\overline{F}_{21}} + \underline{\overline{F}_{21}} = 0 \; . \\ & \bot x \end{split}$$

В уравнении силы, известные по величине и направлению, подчеркнуты двумя чертами, а известные лишь по направлению - одной чертой.

Решим векторное уравнение графически - путем построения многоугольника сил (рис.3.2,б). Для этого необходимо выбрать масштабный коэффициент построения плана сил $K_{\rm F}$, используя любую известную силу, лучше максимальную : у нас $(F_{\rm C3} + F_{\rm T3})$,

$$K_{F} = \frac{(F_{C3} + F_{T3})}{\overline{Z}(F_{C3} + F_{T3})}.$$
(3.10)

Если для рассматриваемого примера отрезок $\overline{Z}(F_{C3}+F_{T3})$, изображающий сумму сил $(F_{C3}+F_{T3})=370$ H, выбрать равным 74 мм, то масштабный коэффициент плана сил будет «удобным» числом:

$$K_F = \frac{370}{74} = 5 H / MM.$$

Тогда отрезки, изображающие остальные известные силы, будут

$$\overline{Z}_{G2} = \overline{Z}_{F_{III'2}} = \frac{68,6}{5} = 13,7$$
 MM;

$$\overline{Z}_{G3} = \overline{Z}_{F_{III'3}} = \frac{102.9}{5} = 20,6$$
 mm;

$$\overline{Z}_{Fu2} = \frac{152,8}{5} = 30,6$$
 mm; $\overline{Z}_{Fu3} = \frac{204,8}{5} = 41$ mm; $\overline{Z}_{F21}^t = \frac{84,9}{5} = 17$ mm.

Построение силового многоугольника начнем с линии действия силы F_{34} , перпендикулярной оси x (рис. 3.2, б). Из произвольной точки a на этой линии, которая является точкой конца отрезка, изображающего вектор силы \overline{Z}_{F34} , проведем вектор $\overline{Z}(F_{C3}+F_{T3})$, известный по величине и направлению. Из конца этого вектора проведём следующий известный вектор $\overline{Z}_{F_{III'3}}$ и так далее, согласно векторному уравнению сил. Из конца последнего известного вектора \overline{Z}_{F21}^t проводим линию действия силы F_{21}^n , параллельную АВ. Пересечение в точке c этой линии и первой, перпендикулярной оси x, определяет искомые отрезки \overline{Z}_{F34} и \overline{Z}_{F21}^n . Измерив их длины, определим значения сил:

$$F_{34} = \overline{Z}_{F34} \cdot K_F = 27 \cdot 5 = 135 \ H;$$

 $F_{21}^n = \overline{Z}_{F21}^n \cdot K_F = 42 \cdot 5 = 210 \ H.$

Полный вектор силы \overline{F}_{21} равен геометрической сумме нормальной и касательной его составляющих

$$\overline{F}_{21} = \overline{F}_{21}^n + \overline{F}_{21}^t \tag{3.11}$$

Величина вектора:

$$F_{21} = \overline{Z}_{F21} \cdot K_F.$$

$$F_{21} = 46.5 = 230$$
 H.

Для силы F_{34} необходимо определить точку ее приложения. Воспользуемся уравнением моментов для звена 3 относительно точки В

$$\sum_{3} M_{\rm B} = 0. ag{3.12}$$

Или

$$M_B(G_3) + M_B(F_{C3} + F_{T3}) + M_B(F_{IIIT3}) + M_B(F_{u3}) + M_B(F_{32}) + F_{34} \cdot h_{34} = 0$$

Так как для рассматриваемого примера все остальные силы проходят через точку B , то и сила F_{34} также проходит через эту точку и ее плечо $h_{34}=0$.

Для определения усилия во вращательной кинематической паре В можно рассмотреть равновесие одного из звеньев -2 или 3. Запишем условие равновесия сил, действующих на звено 3

$$\sum_{3} \overline{F} = 0. \tag{3.13}$$

Или

$$\underline{\underline{F}_{34}} + (\underline{\underline{F}_{C3}} + \underline{\underline{F}_{T3}}) + \underline{\underline{F}_{IIC3}} + \underline{\underline{F}_{u3}} + \underline{\underline{G}_{3}} + \overline{\underline{F}_{32}} = 0.$$

Неизвестный вектор силы \bar{F}_{32} определим с помощью построенного многоугольника сил на рис. 3.2, б, соединив точки b и c:

$$F_{32} = \overline{Z}_{F32} \cdot K_F = 54 \cdot 5 = 270 H.$$

С помощью условия равновесия сил на звене 2 можно было определить усилие \bar{F}_{23} , при этом очевидно, что

$$\bar{F}_{23} = -\bar{F}_{32}$$
.

Рассмотрим равновесие начального звена 1 механизма (рис. 3.2, ϵ). На это звено действует известная сила \bar{F}_{12} во вращательной кинематической паре A :

$$\overline{F}_{12} = -\overline{F}_{21}$$
.

Требуется определить силу \bar{F}_{14} в шарнире О и уравновешивающий момент M_{ν} .

Из уравнения моментов для звена 1 относительно точки о определим уравновешивающий момент:

$$\sum_{1} M_{0} = 0. ag{3.14}$$

Или

$$-F_{12}\ell_{1}\cos\psi_{1}+M_{y}=0.$$

Здесь ℓ_1 - действительная длина ведущего звена; ψ_1 - угол между звеном 1 и перпендикуляром, опущенным на направление силы F_{12} (берется из чертежа).

Направление неизвестного момента ${\rm M_y}$ взято произвольным (у нас против часовой стрелки). Из уравнения определяется величина уравновешивающего момента

$$M_{y} = F_{12}\ell_{1}\cos\psi_{1}. \tag{3.15}$$

Если из расчета значение M_y будет со знаком "минус", то направление уравновешивающего момента на рис.3.2,6 следует сменить на противоположное.

Момент M_y , совпадающий по направлению с положительной угловой скоростью ω_1 , будет положительным, а направленный против ω_1 будет отрицательным.

Для рассматриваемого примера

$$M_{v} = 227 \cdot 0.175 \cdot \cos 17^{0} = 38 H \cdot M$$

и является положительным.

Уравнение равновесия ведущего звена имеет вид

$$\bar{F}_{14} + \bar{F}_{12} = 0. ag{3.16}$$

Отсюда

$$\overline{F}_{14} = -\overline{F}_{12} = \overline{F}_{21}$$
.

Таким образом

$$F_{14} = 227 H$$
.

3.1.2. Определение уравновешивающего момента методом возможных перемещений

Согласно принципу возможных перемещений сумма элементарных работ всех сил и моментов, приложенных к системе, находящейся в равновесии, на возможных перемещениях системы равна нулю

$$\sum_{1}^{n} F_{i} \cdot d_{Si} \cos(F_{i}, d_{Si}) + \sum_{1}^{m} M_{i} d\varphi_{i} = 0.$$
(3.17)

Для механизма возможными перемещениями звеньев и точек приложения сил будут их действительные перемещения, являющиеся функциями положения начального звена. Если приложить к звеньям механизма силы инерции, то можно рассматривать его в состоянии динамического равновесия.

Так как силы, действующие в кинематических парах, являются внутренними, то уравнение (3.17) позволяет найти величину уравновешивающего момента или уравновешивающей силы без их предварительного определения.

Записанное выше уравнение (3.17) неудобно для практического использования, поэтому возьмем сумму элементарных работ в единицу времени; тогда, принимая во внимание, что

$$\frac{d_{Si}}{dt} = v_i$$
 и $\frac{d\phi_i}{dt} = \omega_i$,

получим

$$\sum_{i=1}^{n} |F_{i}| \cdot |\nu_{i}| \cos(F_{i}, \nu_{i}) + \sum_{i=1}^{m} M_{i} \omega_{i} = 0.$$
(3.18)

Здесь суммирование проводится по всем n силам и m моментам сил всех звеньев механизма, а каждое слагаемое представляет собой мощность силы или момента.

Так как скорости точек приложения сил и угловые скорости звеньев известны по величине и направлению из кинематического расчета, то единственным неизвестным является искомая величина уравновешивающего момента (или уравновешивающей силы).

Для рассматриваемого примера уравнение (3.18) запишется

$$|F_{C3} + F_{T3}| \cdot |\upsilon_{B}| \cos \left[(F_{C3} + F_{T3}), \upsilon_{B} \right] + |F_{IIIT3}| \upsilon_{B}| \cos (F_{IIIT3}, \upsilon_{B}) +$$

$$+ |F_{u3}| \upsilon_{B}| \cos (F_{u3}, \upsilon_{B}) + |G_{3}| \upsilon_{B}| \cos (G_{3}, \upsilon_{B}) + |F_{IIIT2}| \upsilon_{S2}| \cos (F_{IIIT2}, \upsilon_{S2}) +$$

$$+ |F_{u2}| \upsilon_{S2}| \cos (F_{u2}, \upsilon_{S2}) + |G_{2}| \upsilon_{S2}| \cos (G_{2}, \upsilon_{S2}) +$$

$$+ M_{u2} \cdot \omega_{2} + M_{v} \cdot \omega_{1} = 0.$$
(3.19)

Значение уравновешивающего момента для расчетного положения будет:

$$\begin{split} M_y &= -(370 \cdot 1,69 \cdot \cos 180^0 + 102,9 \cdot 1,69 \cdot \cos 180^0 + \\ &+ 204,8 \cdot 1,69 \cdot \cos 0^0 + 102 \cdot 1,69 \cdot \cos 90^0 + \\ &+ 68,6 \cdot 1,8 \cdot \cos 155^0 + 152,8 \cdot 1,8 \cdot \cos 52^0 + \\ &+ 68,6 \cdot 1,8 \cdot \cos 115^0 - 22,9 \cdot \frac{1,11}{12,56} = -(-627 - 174 + \\ &+ 346 - 111,9 + 170,5 - 51,9 - 25,4)/12,56 = 37,7 \quad H \cdot M \end{split}$$

Углы между направлениями векторов сил и скоростей можно взять из плана механизма (рис. 3.3). Так как направление приложенного уравновешивающего момента $\mathbf{M}_{\mathbf{y}}$ взято на схеме механизма произвольно, то при отрицательном значении $\mathbf{M}_{\mathbf{y}}$ его направление следует изменить на противоположное.

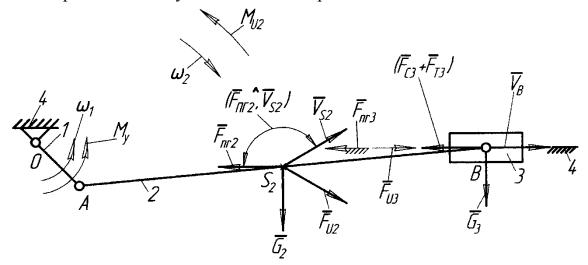


Рис.3.3. Схема механизма для определения уравновешивающего момента

3.1.3. Определение уравновешивающего момента с помощью рычага Жуковского

Рычаг Жуковского является графической интерпретацией метода возможных перемещений.

Н.Е.Жуковский показал, что если векторы всех сил, приложенных к различным точкам звеньев механизма, перенести параллельно самим себе в одноименные точки повернутого на 90° плана скоростей, приняв фигуру плана за жесткий рычаг, то момент каждой силы относительно полюса плана скоростей будет пропорционален ее мощности, а сумма моментов всех указанных сил будет равна нулю. При этом все моменты, в том числе и уравновешивающий, должны быть заменены парами сил.

Пара сил F_{My} , заменяющая уравновешивающий момент, равна

$$F_{Mv} = M_v / \ell_1.$$
 (3.20)

Рычаг Жуковского, представлен на рис. 3.4, a. План скоростей повернут на 90° против часовой стрелки. Сила $F_{\scriptscriptstyle My}$ произвольно направлена вниз от точки a плана.

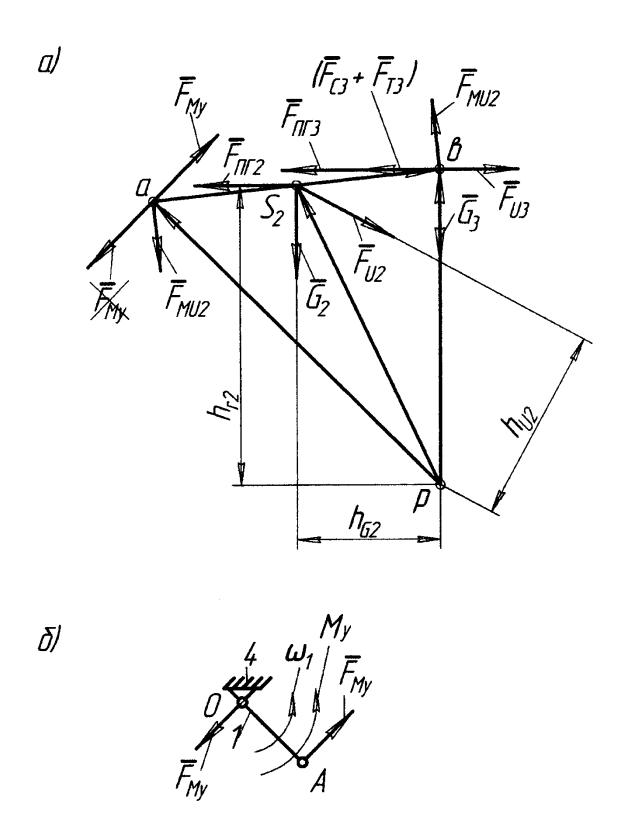


Рис.3.4. Рычаг Жуковского и схема первичного механизма.

Сумма моментов сил относительно полюса р рычага Жуковского имеет вид

$$\sum M_{\rm p} = 0. \tag{3.21}$$

Или

$$\begin{split} &(F_{C3} + F_{T3} + F_{II\Gamma 3} - F_{u3})pb - F_{u2}h_{u2} + G_2h_{G2} + \\ &+ F_{II\Gamma 2} \cdot h_{\Gamma 2} + F_{Mu2} \cdot ab + F_{Mv} \cdot pa = 0. \end{split}$$

Отсюда

$$F_{My} = \left[-(F_{C3} + F_{T3} + F_{IIT3} - F_{u3})pb + F_{u2}h_{u2} - G_2h_{G2} - F_{IIT2}h_{\Gamma 2} - F_{Mu2}ab \right] / pa.$$
 (3.22)

В этом выражении плечи сил определяются из рычага Жуковского путем их замера.

Как видно из формулы, величина силы $F_{\text{му}}$ не зависит от масштаба построения рычага Жуковского.

Численное значение силы от уравновешивающего момента для рассматриваемого примера будет

$$F_{\mathit{My}} = \left[-\left(371 + 102,9 - 204,8\right) \cdot 68 + 152,8 \cdot 43 - 68,6 \cdot 31 - 68,6 \cdot 64 - 16,3 \cdot 62 \right] / 88 = -219 \quad H.$$

Знак «минус» указывает на противоположное принятому направление силы $F_{\text{му}}$ на рычаге Жуковского.

Для определения уравновешивающего момента необходимо полученную силу перенести параллельно самой себе из рычага Жуковского в точку А первичного механизма (рис. 3.4, б), и тогда уравновешивающий момент будет положительным и иметь вид:

$$\mathbf{M}_{y} = \mathbf{F}_{My} \cdot \boldsymbol{\ell}_{1}$$
.

Его величина для рассматриваемого примера

$$M_{v} = 219 \cdot 0.175 = 38.3 H \cdot M$$

4. РАСЧЕТ НА ЭВМ

Программы кинематического и силового анализа КПМ составлены на языке ФОРТРАН для персонального компьютера типа РС. Ввиду большого объема программ текст их не приводится, а даются лишь пояснения по их использованию.

Значения всех параметров задаются в системе СИ: линейные параметры – в метрах, силы – в ньютонах, моменты сил – в ньютон-метрах, массы – в килограммах. Углы берутся в радианной мере.

Кинематические параметры звеньев, кинематических пар и характерных точек определяются в правой системе координат x, y, начало которой расположено в т.О и ось x направлена вдоль линии действия ползуна.

За положительное направление углов принято направление против часовой стрелки.

4.1 Кинематический и силовой анализ КПМ без учета сил трения, зависящих от сил, действующих в кинематических парах

4.1.1. Исходные данные

Массив исходных данных для ввода в компьютер по первому варианту расчета представлен в табл.4.1.

Таблица	4	1
таолица	т.	1

l_1	l_2	$X_{\scriptscriptstyle F}$	Y_F	$\omega_{_{1}}$	$l_{{\scriptscriptstyle AS}_2}$
0,175	1,4	-1	0	12,56	0,7
m_2	m_3	$l_{\scriptscriptstyle \Pi}$	$\Pi_{arGamma}$	$\Pi_{\scriptscriptstyle B}$	$ F_{T3} $
7	10,5	0,22	1	0	60
$ x_B^{'} $	$\left F_{C3}^{\prime}\right $	$\left \chi_{B}^{\prime\prime}\right $	$\left F_{C3}^{\prime\prime}\right $	$\left \chi_{B}^{\prime\prime\prime}\right $	$\left F_{C3}^{\prime\prime\prime}\right $
1,575	300	1,4	300	1,225	200
N	KON				
24	1				

Здесь ℓ_1 и ℓ_2 - длина звеньев 1 и 2;

 x_F, y_F - координаты дополнительной точки F, определяющей признак сборки КПМ. Координата y_F для центрального механизма всегда равна нулю;

 $\omega_{\mbox{\tiny I}}$ - угловая скорость вращения кривошипа, определяется по заданной частоте вращения:

$$\omega_1 = \pi n_1 / 30$$
.

Параметр ℓ_{AS2} определяет положение центра тяжести шатуна — точки S_2 ;

 m_2 и m_3 - массы звеньев 2 и 3;

 $l_{\,\Pi}$ - длина ползуна.

Значения коэффициентов горизонтальной Π_{Γ} и вертикальной Π_{B} перегрузок вводится с учетом их знака. Положительные значения этих коэффициентов соответствуют их направлению, совпадающему с положительными направлениями осей координат. При этом силы, возникающие от действия перегрузок, будут направлены в противоположную перегрузкам сторону.

 $|F_{T3}|$ - постоянная составляющая силы трения, возникающая в уплотнениях при движении ползуна 3, взятая по модулю.

В третьей строке таблицы записываются попарно значения координат точки В, определяющие два крайних и среднее положения точки В ползуна, и соответствующие им значения силы сопротивления F_{T3} для рабочего диапазона работы механизма. Все параметры в третьей строке задаются в виде абсолютных величин.

Для положений механизма, не определяемых этими тремя точками, значения силы сопротивления для рабочего хода ползуна вычисляются в программе по методу параболической интерполяции.

Параметр N в табл. 4.1 определяет число расчетных точек для всего диапазона работы механизма. Назначим N=24 (N_{\min} =8). Тогда любое из восьми положений механизма, указанных на рис.1.1, совпадёт с одной из N точек, рассчитываемых по программе.

Параметр KON – программный параметр. Он определяет признак конца вариантов исходных данных. KON=1, если данный вариант является последним среди нескольких вариантов исходных данных либо единственным. В противном случае KON=0.

В табл.4.1 представлены конкретные значения всех перечисленных параметров для рассматриваемого примера.

4.1.2. Результаты расчета

Программа для кинематического и силового расчетов КПМ без учета сил трения, зависящих от усилий в кинематических парах, имеет шифр AN2.

Образец распечатки результатов расчета на ПК по программе AN2 приведен в приложении 1.

В первых трёх строчках распечатаны значения параметров таблицы исходных данных за исключением N и KON. Печать исходных данных позволяет контролировать их правильный ввод в машину.

Далее следуют значения углов поворота кривошипа для расчетных точек и соответствующие им массивы выводимых параметров, распечатанные в четырех строчках:

строка 1
$$x_B$$
 ν_B a_B φ_2 ω_2 ε_2 строка 2 x_{S2} y_{S2} x_{S2} y_{S2} x_{S2} y_{S2} x_{S2} x_{S2} x_{S2} x_{S2} x_{S2} x_{S2} x_{S2} x_{S2} x_{S2} x_{S2} строка 3 x_{S2} x_{S2}

Угол поворота кривошипа для каждой расчетной точки определяется как

$$\varphi_1 = i \frac{360^0}{N}, \qquad i = 0...N \tag{4.1}$$

При числе расчетных точек N число массивов в распечатке равно N+2. Это связано с тем, что два крайних положения ползуна рассчитаются дважды — для рабочего и холостого его ходов.

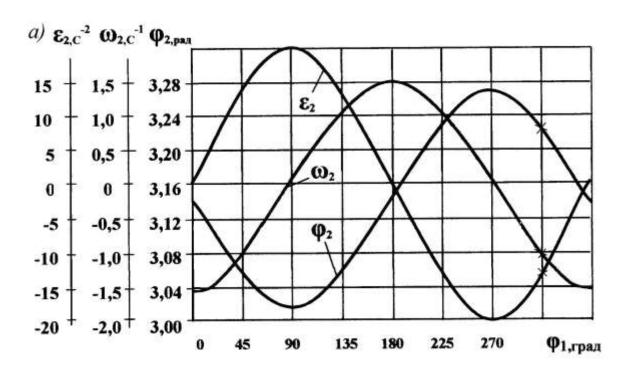
4.1.3. Кинематический анализ.

Аналитическим методом с использованием векторов, связанных со звеньями механизма (см.рис.2.1), рассчитываются кинематические характеристики звеньев механизма и точки S_2 для всего диапазона его работы.

Если направления векторов будут противоположны принятым на рис.2.1, то это необходимо будет учесть при сравнении полученных значений углов со значениями, приведенными на распечатке.

На рис.4.1 представлены кинематические характеристики звеньев 2 и 3,построенные в функции положения начального звена φ_1 .

4.1.4. Определение силовых характеристик


При расчете с помощью ПК получаются значения усилий во всех кинематических парах в проекциях на оси координат X и У и уравновешивающий момент на ведущем звене во всем диапазоне его работы (см. образец распечатки в приложении 1).

Кроме того, для всех расчетных точек в распечатке дается суммарное значение сил сопротивления F_{C3} и трения F_{T3} , приложенных к ползуну 3.

На рис.4.2 приведена схема механизма в расчетном положении с обозначением сил и моментов, приложенных к звеньям механизма, а также сил, действующих в кинематических парах. Здесь усилие в поступательной кинематической паре F_{34} представлено в виде двух составляющих F_{34}^{\prime} и $F_{34}^{\prime\prime}$, приложенных по краям ползуна, которые разложены на горизонтальные и вертикальные составляющие. Таким образом, на первом этапе силового расчета полное усилие F_{34} равно

T.K.
$$F_{34} = F_{34}^{/y} + F_{34}^{/y}, F_{34}^{/x} = F_{34}^{//x} = 0,$$
 (4.2)

а поскольку плечо силы F_{34} $h_{34}=0$, то очевидно, что $F_{34}^{/y}=F_{34}^{//y}. \tag{4.3}$

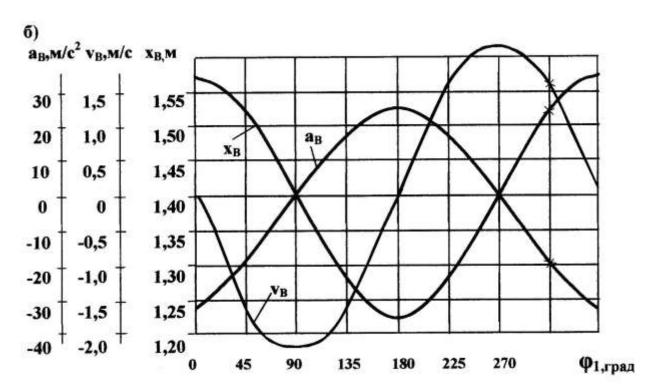


Рис.4.1. Кинематические характеристики звеньев 2 и 3

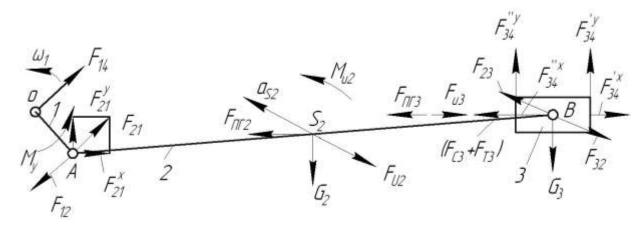


Рис.4.2. Схема механизма с приложенными силами

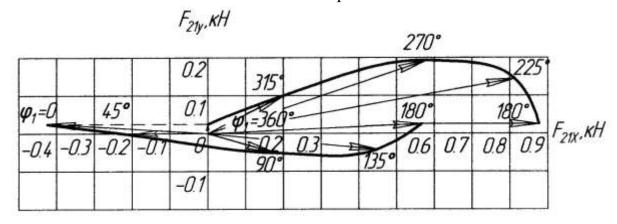


Рис.4.3. Годограф силы F_{21}

Рис.4.4. Годограф силы F_{23}

Силовые характеристики, построенные ПО результатам распечатки, представлены на рис.4.3- 4.5. На рис.4.3, 4.4 показаны годографы сил $\overline{F_{21}}$, $\overline{F_{23}}$, действующих в кинематических парах А и В на звене 2. годографы сил показывают изменение величины и направления вектора силы в зависимости от положения построении годографов механизма. При сил масштабы вертикальной горизонтальной составляющих сил должны быть одинаковыми, и отсчет двух составляющих должен идти от нулевого значения. В противном случае действительное направление вектора силы будет потеряно. На годографах сил указаны значения углов φ_1 , которым соответствуют точки годографа.

На годографах для углов $\varphi_1 = 0^0 (360^0)$ и $\varphi_1 = 180^0$ наблюдаются скачки сил. Они связаны со скачкообразным изменением сил трения F_{T3} и сопротивления F_{C3} при изменении направления движения ползуна.

На рис.4.5 представлены зависимости уравновешивающего момента M_y и полной силы реакции F_{34} от угла поворота ведущего звена.

При построении графика $F_{34} = F_{34}(\varphi_1)$ следует учесть, что

$$F_{34} = F_{34}^{/y} + F_{34}^{//y}$$
.

Сравнение результатов, полученных на ПК, со значениями кинематических и силовых параметров для расчетной точки рассматриваемого примера дает ошибку в пределах заданной нормы.

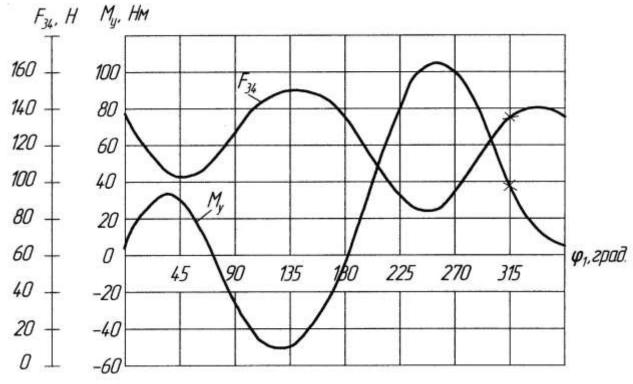


Рис. 4.5. График уравновешивающего момента $M_{\rm y}$ и силы $F_{\rm 34}$

4.2. Силовой анализ с учетом трения, зависящего от сил в кинематических парах

Программа кинематического и силового расчета КПМ с учетом трения в кинематических парах имеет шифр А2Т. Этот вариант программы позволяет:

1) провести силовой расчет КПМ с учетом трения, зависящего от сил в кинематических парах;

- 2) расположить КПМ как горизонтально, так и вертикально (например, КПМ долбежного станка) (рис.4.7);
- 3) перенести параллельно оси у точки приложения силы сопротивления F_{C3} (рис.4.7).

4.2.1. Методика расчета

Наличие трения изменяет величину и направление действующих сил в кинематических парах, как во вращательных, так и в поступательных.

Трение во вращательной кинематической паре V класса звеньев i, j учитывается в виде момента трения, приложенного к звену i со стороны звена j:

$$M_{Tii} = -(M_{Tii}^{\circ} + r f | F_{ii} |) \operatorname{sign} \omega_{ii}, \tag{4.4}$$

где M_{Tij}° - постоянная величина момента сил трения; г- радиус цапфы; f- коэффициент трения в цапфе; $\left|F_{ij}\right|$ - модуль силы, действующей в кинематической паре на звено і со стороны звена j; $\omega_{ij}=\omega_i-\omega_j$ - относительная угловая скорость звена i.

Трение в поступательной кинематической паре V класса звеньев $i,\ j$ определяется как

$$F_{Tij} = -(F_{Tij}^{\circ} + f_{II} | F_{ij}^{n} |) sign \upsilon_{ij}, \tag{4.5}$$

где F_{Tij}° - постоянная величина силы трения; f_{II} - коэффициент трения в поступательной паре; $\left|F_{ij}^{n}\right|$ - модуль нормальной составляющей силы реакции в поступательной паре на звене i, полученный из расчета без учета сил трения; $\upsilon_{ij}=\upsilon_{i}-\upsilon_{j}$ - относительная линейная скорость звена i.

Если пренебречь постоянными составляющими сил и моментов сил трения, то получим формулы

$$M_{Tii} = -r f \left| F_{ii} \right| sign \omega_{ii} \tag{4.6}$$

$$F_{Tij} = -f_{II} |F_{ij}^n| sign v_{ij}, \tag{4.7}$$

Силовой расчет рычажных механизмов с учетом трения проводят методом итераций (последовательных приближений).

В первой итерации определяются неизвестные силы в кинематических парах при условии равенства нулю сил и моментов сил трения, зависящих от сил в парах.

Во второй итерации определяются силы и моменты сил трения в зависимости от сил, действующих во всех кинематических прах, и кинетостатический расчет

проводится в том же порядке, но с учетом дополнительно приложенных сил и моментов сил трения.

Следующие итерации аналогичны второй. Опыт показывает, что уже второе приближение дает хорошие результаты.

На рис.4.6 представлена схема КПМ со всеми действующими на звеньях механизма силами реакции и силами и моментами сил трения. Остальные силы на схеме не показаны.

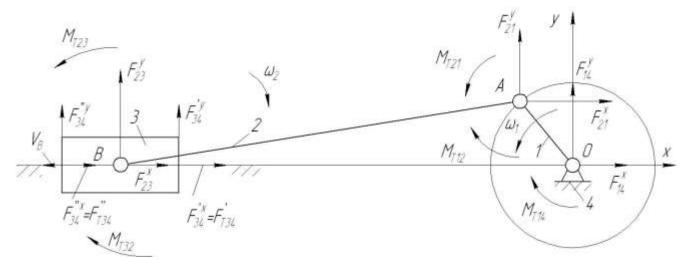


Рис. 4.6. Схема механизма с учетом трения в кинематических парах

Здесь силы и моменты сил трения определяются в соответствии с формулами (4.6) и (4.7).

<u>Звено 3</u>

$$F_{T34}^{\prime} = -f_{\Pi} |F_{34}^{\prime y}| sign v_{34};$$

$$F_{T34}^{"} = -f_{II} |F_{34}^{"y}| sign v_{34};$$

$$M_{T32} = -r f |F_{32}| sign \omega_{32}$$
.

<u>Звено 2</u>

$$M_{T23} = -M_{T32};$$

$$M_{T21} = -r f |F_{21}| sign \omega_{21};$$

$$M_{T2} = M_{T23} + M_{T21}$$
.

Звено 1

$$\overline{\mathbf{M}_{\mathrm{T}12}} = -\mathbf{M}_{\mathrm{T}21};$$

$$M_{T14} = -r f |F_{14}| sign \omega_{14};$$

$$\mathbf{M}_{T1} = \mathbf{M}_{T12} + \mathbf{M}_{T14}$$
.

где
$$\upsilon_{34} = \upsilon_{B}$$
;

$$\omega_{32} = \omega_3 - \omega_2 = -\omega_2;$$

$$F_{32} = \sqrt{(F_{32}^{x})^2 + (F_{32}^{y})^2}$$
;

$$\omega_{21} = \omega_2 - \omega_1;$$

$$F_{21} = \sqrt{\left(F_{21}^{x}\right)^{2} + \left(F_{21}^{y}\right)^{2}};$$

$$\omega_{14} = \omega_{1};$$

$$F_{14} = \sqrt{\left(F_{14}^{x}\right)^{2} + \left(F_{14}^{y}\right)^{2}};$$

 $M_{{\scriptscriptstyle T2}}$ и $M_{{\scriptscriptstyle T1}}$ - суммарные моменты сил трения, действующие на звенья 2 и 1.

Вертикальное расположение КПМ

На рис.4.7 представлены схемы КПМ с вертикальным положением направляющей ползуна 3 для двух признаков сборки механизма ($X_F = -1$ и $X_F = +1$).

Ось X направлена вертикально вверх и совпадает с направляющей ползуна. Ось Y составляет с осью X правую систему координат.

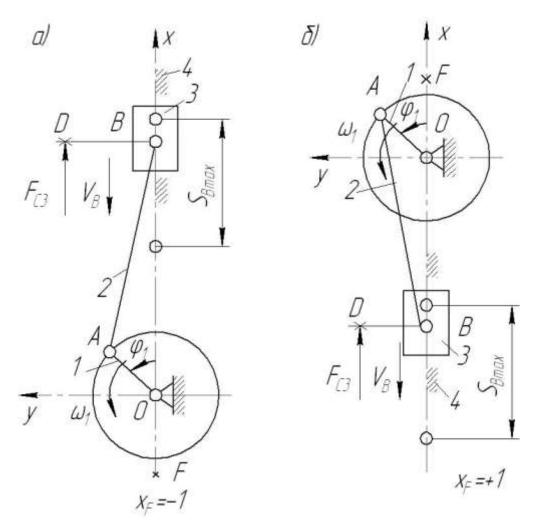


Рис.4.7. Схема КПМ с вертикальными направляющими ползуна

В точке D приложена сила сопротивления F_{C3} . Координаты т. D следующие:

$$X_D = X_B$$
; Y_D .

Рабочий ход ползуна для двух схем механизма соответствует углу поворота кривошипа от 0^{0} до 180^{0} (υ_{B} < 0). При этом сила сопротивления на звене 3 F_{C3}

изменяется по закону, представленному на рис. 4.8 (закон справедлив только для КПМ с вертикальной направляющей ползуна).

Здесь $F_{C3_{\max}}$ - максимальное значение силы сопротивления; $S_{B_{\max}}$ - ход ползуна, a=0,1 $S_{B_{\max}}$; в=0,1 $F_{C3_{\max}}$.

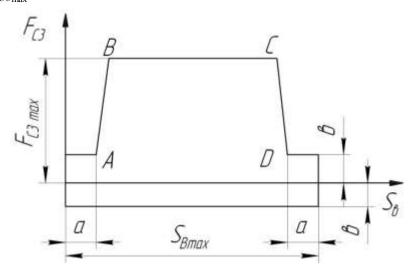


Рис.4.8. Закон изменения силы сопротивления для вертикального положения КПМ

Наклон прямых AB и CD не задается, а зависит от расположения двух соседних точек A и B или C и D машинного расчета (определяется числом расчетных точек N, заданных для расчета на ЭВМ).

4.2.2. Расчет на ПК по программе А2Т

Исходные данные для программы A2T представлены в табл. 4.2. Таблица 4.2

l_1	l_2	$X_{\scriptscriptstyle F}$	$r \cdot f$	$\omega_{_{1}}$	l_{AS_2}
0,175	1,4	+1	0,005	12,56	0,7
m_2	m_3	$l_{{\scriptscriptstyle \Pi}}$	Π_{Γ}	$\Pi_{\scriptscriptstyle B}$	f_n
7	10,5	0,22	0	0	0,2
$ x_B^{'} $	$\left F_{C3}^{\prime}\right $	$\left x_{B}^{\prime\prime}\right $	$\left F_{C3}^{\prime\prime}\right $	$\left \mathcal{X}_{B}^{\prime \prime \prime} \right $	$\left F_{C3}^{\prime\prime\prime} ight $
1,575	1400	1,4	1400	1,225	1100
y_D	$F_{C3\mathrm{max}}$	PRe			
0	0	0			
N	KON				
24	1				

Новые параметры в таблице обведены рамкой:

rf- произведение радиуса цапфы и коэффициента трения во вращательной паре – одинаково для всех вращательных кинематических пар V класса;

 f_{II} - коэффициент трения в поступательной паре;

 V_D - координата У точки D на схеме механизма;

 $F_{C3\max}$ - максимальное значение силы сопротивления;

 $PR_{\it B}$ - признак вертикальности, характеризующий расположение механизма: для горизонтальной направляющей ползуна $PR_{\it B}$ =0, а для вертикальной направляющей ползуна $PR_{\it B}$ =1.

Для вертикального расположения механизма все данные строчки 3 равны нулю.

Для горизонтального расположения механизма параметры $F_{C3_{\max}}$ и PRe всегда равны нулю.

Параметр V_D может принимать любые значения, как для вертикального, так и для горизонтального положений механизма.

Расчет по программе A2T проведен для значений параметров, указанных в табл.4.2. Исходные данные отличаются от данных рассмотренного выше примера признаком сборки и силовой нагрузкой.

Печать результатов расчета

В варианте программы силового расчета с учетом трения, зависящего от величины реакций, (шифр A2T) на печать выведены результаты двух итераций: для первой итерации напечатаны значения лишь сил реакций, для второй итерации — значения параметров кинематического и силового расчетов.

<u>1-я итера</u>	<u>ация</u>					
строка 1	F_{21}^{x}	$F_{21}^{\ y}$	F_{23}^{x}	$F_{23}^{\ y}$	$F_{34}^{/x}$	$F_{34}^{/y}$
строка 2	$F_{34}^{/\!/x}$	$F_{34}^{\# y}$	F_{14}^{x}	$F_{14}^{\ y}$	M_{y}	
<u>2-я итера</u>	ация					
строка 1	X_B	$ u_{\scriptscriptstyle B}$	$a_{\scriptscriptstyle B}$	$arphi_2$	$\omega_{\scriptscriptstyle 2}$	${\cal E}_2$
строка 2	x_{s2}	${\cal Y}_{S2}$	*	${\cal Y}_{S2}$	x_{S2}	\mathcal{Y}_{S2}
строка 3	F_{21}^{x}	$F_{21}^{\ y}$	F_{23}^{x}	$F_{23}^{\ y}$	$F_{34}^{/x}$	$F_{34}^{/y}$
строка 4	$F_{34}^{/\!/x}$	$F_{34}^{\prime\prime y}$	$F_{14}^{\ x}$	$F_{14}^{\ y}$	M_{y}	$\left(F_{C3}+F_{T3}\right)$

Образец распечатки приведен в приложении 2.

На рис.4.9 и 4.10 приведены результаты расчета силовых характеристик механизма: годограф силы реакции F_{21} и зависимость уравновешивающего момента M_y от положений кривошипа для двух итераций. Как следует из рисунков, учет переменной составляющей трения в кинематических парах приводит к изменению значений силовых параметров до 30%.

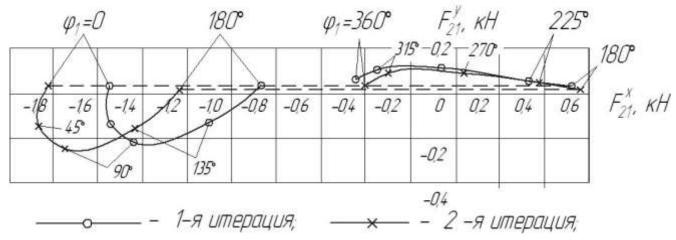


Рис.4.9. Годограф силы F_{21}

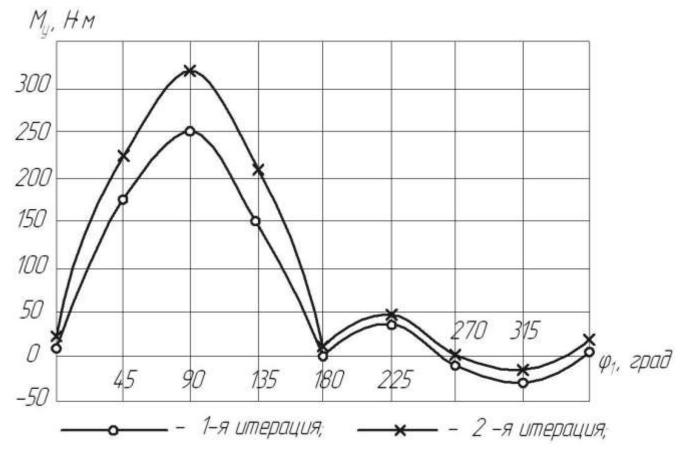


Рис.4.10. Зависимость уравновешивающего момента от положения кривошипа

5. ОФОРМЛЕНИЕ КУРСОВОЙ РАБОТЫ

Содержание курсовой работы (курсовой работы) должно быть отражено в пояснительной записке и на листе ватмана формата A1.

Титульный лист пояснительной записки оформляется по образцу, приведенному в приложении 3.

Пояснительная записка должна содержать полную информацию по расчету КПМ: техническое задание; технические условия, включающие структурную схему механизма и таблицу исходных данных; кинематический синтез схемы механизма; описание методов кинематического и силового расчетов КПМ; формулы и пояснения к ним; расчеты всех требуемых кинематических и силовых параметров с записью их размерностей; анализ результатов; рисунки, иллюстрирующие расчетысхемы механизма, планы скоростей, ускорений, сил, кинематические характеристики звеньев, годографы сил и т.д., как это показано в учебном пособии; распечатка программы.

Лист ватмана отображает основные этапы расчета, повторяя частично содержание пояснительной записки.

На листе должны быть представлены следующие результаты: схема механизма для 8 положений начального звена с траекториями движений точек A, B, S_2 ; схемы механизма в расчетном положении, иллюстрирующие кинематический расчет механизма аналитическим и графическим методами, а также силовой расчет механизма; планы скоростей, ускорений и сил; кинематические характеристики выходного звена 3; годограф силы реакции F_{21} ; график изменения уравновешивающего момента в зависимости от угла φ_1 .

Лист должен быть выполнен в соответствии с требованиями ГОСТов.

ЗАКЛЮЧЕНИЕ

Для примера расчета получены следующие результаты.

- 1. Вычислены кинематические характеристики ведомых звеньев механизма, позволяющие сделать вывод о рациональности его параметров.
- 2. Получены силы и моменты сил, действующие на звенья механизма, позволяющие сделать их расчет на прочность при конструировании.
- 3. Выявлено влияние сил трения в кинематических парах механизма, позволяющее оценить его коэффициент полезного действия (КПД).
- 4. Вычислен уравновешивающий момент, позволяющий оценить потребную мощность для его привода. Для приведенного примера без учета потерь на трение она будет

$$N = M_V \cdot \omega_1 = 38 \cdot 12,56 = 480$$
 BT.

При подборе электродвигателя следует учесть КПД механизма.

Приложение 1 Образец распечатки результатов расчета на PC по программе AN2

7.0000 1.050000 1.2200 1.0000 .0000 6.00000 1.5750 300.000 1.40000 300.0000 1.2250 200.0000 YFOJI ΠOBOPOTA KPUBOIIIUIIIA = 1.000 ΓPAJIVOB 1.5750 .0000 -31.0577 3.1416 -1.5700 .0000 .8750 .0000 .0000 .0000 -29.3323 .0000 .0000 68.6700 -419.1011 34.3350 .6006 60.6700 YFOJI ΠΟΒΟΡΤΑ ΚΡΙΒΟΙΙΙΙΠΑ = 15.000 ΓΡΑJIVCOB 1.5683 -6376 -29.6597 3.1092 -1.5173 5.0319 .8687 .0226 6.032 1.0616 -28.1629 -3.5726 -396.8919 26.6782 26.4214 16.9836 .0000 59.9943 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 YFOJI ΠΟΒΟΡΤΑ ΚΡΙΒΕΙΙΙΙΙΤΙΑ -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -69017 .310651 16.1270 226.2999 4	.1750	1.4000	-1.0000	.0000	12.5600	.7000
YFOJI ΠOBOPCTA KPUBOHIMITA = .000 ГРАДУСОВ 1.5750 .0000 -31.0577 3.1416 -1.5700 .0000 .8750 .0000 .0000 .0000 -29.3323 .0000 -419.7572 34.3350 283.1011 34.3350 .0000 68.6700 .0000 68.6700 -419.1011 34.3350 .0086 60.6700 УГОЛ ПОВОРОТА КРИВОНИПА = 15.000 ГРАДУСОВ 1.5683 6376 -29.6597 3.1092 -1.5173 5.0319 .8687 .0226 6032 1.0616 -28.1629 -3.5726 -396.8919 26.6782 268.4214 16.9836 .0000 59.9943 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 .331.0651 16.1270 226.2909 4.2309 0.000 53.6179	7.0000	10.50000	.2200	1.0000	.0000	60.0000
1.5750 .0000 -31.0577 3.1416 -1.5700 .0000 .8750 .0000 .0000 .0000 -29.3323 .0000 .419.7572 34.3350 283.1011 34.3350 .0000 68.6700 УГОЛ ПОВОРОТА КРИВОШИПА = 15.000 ГРАДУСОВ 1.5683 6376 -29.6597 3.1092 -1.5173 5.0319 .8687 .0226 6032 1.0616 -28.1629 -3.5726 .396.8919 26.6782 268.4214 16.9836 .0000 59.9943 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 .331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .3000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.3881	1.5750	300.000	1.40000	300.0000	1.2250	200.0000
.8750 .0000 .0000 -29.3323 .0000 -419.7572 34.3350 283.1011 34.3350 .0000 68.6700 .0000 68.6700 -419.1011 34.3350 6.0086 60.6700 УГОЛ ПОВОРОТА КРИВОШИПА = 15.000 ГРАДУСОВ 1.5683 6376 -29.6597 3.1092 -1.5173 5.0319 .8687 .0226 6032 1.0616 -28.1629 -3.5726 -396.8919 26.6782 26.48214 16.9836 .0000 59.9943 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 -331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .31.1145 1.3881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 .230.1336 1.1795	УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	.000 ГРАДУ	COB	
-419.7572 34.3350 283.1011 34.3350 .0000 68.6700 .0000 68.6700 -419.1011 34.3350 6.0086 60.6700 УГОЛ ПОВОРОТА КРИВОШИПА = 15.000 ГРАДУСОВ 1.5683 6376 -29.6597 3.1092 -1.5173 5.0319 .8687 .0226 6032 1.0616 -28.1629 -3.5726 -396.8919 26.6782 22.4862 60.0000 59.9943 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 -331.0651 16.1270 226.2909 4.2309 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.133	1.5750	.0000	-31.0577	3.1416	-1.5700	.0000
.0000 68.6700 -419.1011 34.3350 6.0086 60.6700 УГОЛ ПОВОРОТА КРИВОШИПА = 15.000 ГРАДУСОВ 1.56836376 -29.6597 3.1092 -1.5173 .5.0319 .8687 .02266032 1.0616 -28.1629 -3.5726 -396.8919 26.6782 268.4214 16.9836 .0000 59.9943 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 30.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.10888331 .0000 51.0859 .0000 51.0859 .0000 51.0859 .230.1336 1.1795 28.6235 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ 1.4793 -2.0232 -12.0781 3.0331 -7.896 17.1104 .7834 .0.756 -1.9634 .5495 -12.9408 -11.9541 -105.7304 -17.4251 -83.8180 2.4162 .0000 52.7106 .0000 52.7106 .0000 52.7106 .105.7304 -17.4251 14.4992 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ 1.4351 -2.1923 -4.1381 3.02064093 19.1673 .7402 .0845 -2.1577 0.2844 -5.6416 -13.3331 28.7339 -36.7581 .4447 12.0964 .0000 57.5507 .0000 57.5507 .28.7339 .36.7581 .6.5220 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 90.0000 ГРАДУСОВ 1.3390 -2.1980 3.4781 3.0163 .0000 19.8751 .6945 0.0875 -2.1982 .0000 17.391 -13.8034 160.3690 -52.6469 -79.5255 24.6928 .0000 63.8488 .0000 63.8488 .00000 63.8488 160.3690 -52.6469 -28.0646 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА	.8750	.0000	.0000	.0000	-29.3323	.0000
УГОЛ ПОВОРОТА КРИВОШИПА = 15.000 ГРАДУСОВ 1.5683 6376 -29.6597 3.1092 -1.5173 5.0319 .8687 .0226 6032 1.0616 -28.1629 -3.5726 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 -331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -11145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.1088 8331 .0000 51.0859 .0000 51.0859 -230.1336 1.1795 28.6235 60.000 УГОЛ ПОВОРОТА КРИВОШИПА = 4	-419.7572	34.3350	283.1011	34.3350	.0000	68.6700
1.5683 6376 29.6597 3.1092 -1.5173 5.0319 .8687 .0226 6032 1.0616 -28.1629 -3.5726 -396.8919 26.6782 268.4214 16.9836 .0000 59.9943 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 -331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.1088 -8331 .0000 51.0859 .0001 51.0859 -230.1336	.0000	68.6700	-419.1011	34.3350	6.0086	60.6700
.8687.022660321.0616-28.1629-3.5726-396.891926.6782268.421416.9836.000059.9943.000059.9943-396.891926.678222.486260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ1.5488-1.2182-25.64723.0791-1.36239.7627.8502.0437-1.1586.8518-24.7778-6.9017-331.065116.1270226.29094.2309.000053.6179.000053.6179-331.065116.127031.412360.0000УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ1.5183-1.6921-19.54373.0531-1.114513.8881.8210.0619-1.6232.7771-19.5278-9.7605-230.13361.1795162.1088-8331.000051.0859.000051.0859-230.13361.179528.623560.0000УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ1.4793-2.0232-12.07813.0331-7.89617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206-409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.69450.0875-2.1982.0000 <td>УГОЛ ПОВ</td> <td>ОРОТА КРИ</td> <td>ІВОШИПА =</td> <td>15.000 ΓPA</td> <td>ЦУСОВ</td> <td></td>	УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	15.000 ΓPA	ЦУСОВ	
-396.8919 26.6782 268.4214 16.9836 .0000 59.9943 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 -331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.1088 -8331 .0000 51.0859 .0000 51.0859 -230.1336 1.1795 28.6235 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ 1.4793 -2.0232 -12.0781 3.0331 -7.896 17.1104 .7834 .0756 -1.9634 <td< td=""><td>1.5683</td><td>6376</td><td>-29.6597</td><td>3.1092</td><td>-1.5173</td><td>5.0319</td></td<>	1.5683	6376	-29.6597	3.1092	-1.5173	5.0319
.0000 59.9943 -396.8919 26.6782 22.4862 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 -331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.1088 8331 .0000 51.0859 .0000 51.0859 -230.1336 1.1795 28.6235 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ 1.4793 -2.0232 -12.0781 3.0331 -7.896 17.1104 .7834 .0756 -1.9634 .5495 -12.9408 -11.9541 -105.7304 -17.4251 -83.8180 2.4162	.8687					-3.5726
УГОЛ ПОВОРОТА КРИВОШИПА = 30.000 ГРАДУСОВ 1.5488 -1.2182 -25.6472 3.0791 -1.3623 9.7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 -331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.1088 8331 .0000 51.0859 .0000 51.0859 -230.1336 1.1795 28.6235 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ 1.4793 -2.0232 -12.0781 3.0331 7896 17.1104 .7834 .0756 -1.9634 .5495 -12.9408 -11.9541 -105.7304 -17.4251 -83.8180 2.4162 .0000 52.7106	-396.8919	26.6782	268.4214	16.9836	.0000	59.9943
1.5488 -1.2182 -25.6472 3.0791 -1.3623 9,7627 .8502 .0437 -1.1586 .8518 -24.7778 -6.9017 -331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.1088 8331 .0000 51.0859 .0000 51.0859 -230.1336 1.1795 28.6235 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ 1.4793 -2.0232 -12.0781 3.0331 7896 17.1104 .7834 .0756 -1.9634 .5495 -12.9408 -11.9541 -105.7304 -17.4251 -83.8180 2.4162 .0000 52.7106 .0001 52.7106 -105.7304	.0000	59.9943	-396.8919	26.6782	22.4862	60.0000
.8502.0437-1.1586.8518-24.7778-6.9017-331.065116.1270226.29094.2309.000053.6179.000053.6179-331.065116.127031.412360.0000УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ1.5183-1.6921-19.54373.0531-1.114513.8881.8210.0619-1.6232.7771-19.5278-9.7605-230.13361.1795162.10888331.000051.0859.000051.0859-230.13361.179528.623560.0000УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ1.4793-2.0232-12.07813.0331789617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРО	УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	,	,	
-331.0651 16.1270 226.2909 4.2309 .0000 53.6179 .0000 53.6179 -331.0651 16.1270 31.4123 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.1088 8331 .0000 51.0859 .0000 51.0859 -230.1336 1.1795 28.6235 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ 17.1104 .7834 .0756 -1.9634 .5495 -12.9408 -11.9541 -105.7304 -17.4251 -83.8180 2.4162 .0000 52.7106 .0000 52.7106 -105.7304 -17.4251 14.4992 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ 1.4351 -2.1923 -4.1381 3.0206 4093 19.1673 .7402 .0845 -2.1577 0.2844 -5.6416 -13.3331 <td>1.5488</td> <td>-1.2182</td> <td>-25.6472</td> <td>3.0791</td> <td>-1.3623</td> <td>9.7627</td>	1.5488	-1.2182	-25.6472	3.0791	-1.3623	9.7627
.000053.6179-331.065116.127031.412360.0000УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ1.5183-1.6921-19.54373.0531-1.114513.8881.8210.0619-1.6232.7771-19.5278-9.7605-230.13361.1795162.10888331.000051.0859.000051.0859-230.13361.179528.623560.0000УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ1.4793-2.0232-12.07813.0331789617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГР						-6.9017
УГОЛ ПОВОРОТА КРИВОШИПА = 45.000 ГРАДУСОВ 1.5183 -1.6921 -19.5437 3.0531 -1.1145 13.8881 .8210 .0619 -1.6232 .7771 -19.5278 -9.7605 -230.1336 1.1795 162.1088 8331 .0000 51.0859 .0000 51.0859 -230.1336 1.1795 28.6235 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ 1.4793 -2.0232 -12.0781 3.0331 7896 17.1104 .7834 .0756 -1.9634 .5495 -12.9408 -11.9541 -105.7304 -17.4251 -83.8180 2.4162 .0000 52.7106 .0000 52.7106 -105.7304 -17.4251 14.4992 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ 1.4351 -2.1923 -4.1381 3.0206 4093 19.1673 .7402 .0845 -2.1577 0.2844 -5.6416 -13.3331 28.7339 -36.7581 .4447 12.0964 .0000 57.5507 <td>-331.0651</td> <td>16.1270</td> <td>226.2909</td> <td>4.2309</td> <td>.0000</td> <td>53.6179</td>	-331.0651	16.1270	226.2909	4.2309	.0000	53.6179
1.5183-1.6921-19.54373.0531-1.114513.8881.8210.0619-1.6232.7771-19.5278-9.7605-230.13361.1795162.10888331.000051.0859.000051.0859-230.13361.179528.623560.0000УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ1.4793-2.0232-12.07813.0331789617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.0885<	.0000	53.6179	-331.0651	16.1270	31.4123	60.0000
.8210.0619-1.6232.7771-19.5278-9.7605-230.13361.1795162.10888331.000051.0859.000051.0859-230.13361.179528.623560.0000УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ1.4793-2.0232-12.07813.0331789617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.6042 </td <td>УГОЛ ПОВ</td> <td>ОРОТА КРИ</td> <td>ІВОШИПА =</td> <td>45.000 ΓPA)</td> <td>ЦУСОВ</td> <td></td>	УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	45.000 ΓPA)	ЦУСОВ	
-230.13361.1795162.10888331.000051.0859.000051.0859-230.13361.179528.623560.0000УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ1.4793-2.0232-12.07813.0331789617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	1.5183					13.8881
.000051.0859-230.13361.179528.623560.0000УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ1.4793-2.0232-12.07813.0331789617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	.8210	.0619	-1.6232	.7771	-19.5278	-9.7605
УГОЛ ПОВОРОТА КРИВОШИПА = 60.000 ГРАДУСОВ1.4793-2.0232-12.07813.0331789617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	-230.1336	1.1795	162.1088	8331	.0000	51.0859
1.4793-2.0232-12.07813.0331789617.1104.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	.0000	51.0859	-230.1336	1.1795	28.6235	60.0000
.7834.0756-1.9634.5495-12.9408-11.9541-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	60.000 ΓPA)	ЦУСОВ	
-105.7304-17.4251-83.81802.4162.000052.7106.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	1.4793					17.1104
.000052.7106-105.7304-17.425114.499260.0000УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	.7834	.0756	-1.9634	.5495	-12.9408	-11.9541
УГОЛ ПОВОРОТА КРИВОШИПА = 75.000 ГРАДУСОВ 1.4351	-105.7304					
1.4351-2.1923-4.13813.0206409319.1673.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177						60.0000
.7402.0845-2.15770.2844-5.6416-13.333128.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	УГОЛ ПОВ				ЦУСОВ	
28.7339-36.7581.444712.0964.000057.5507.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	1.4351					
.000057.550728.7339-36.7581-6.522060.0000УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177	.7402	.0845	-2.1577	0.2844	-5.6416	-13.3331
УГОЛ ПОВОРОТА КРИВОШИПА = 90.000 ГРАДУСОВ 1.3890 -2.1980 3.4781 3.0163 .0000 19.8751 .6945 0.0875 -2.1982 .0000 1.7391 -13.8034 160.3690 -52.6469 -79.5255 24.6928 .0000 63.8488 .0000 63.8488 160.3690 -52.6469 -28.0646 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ 1.3445 -2.0539 10.1523 3.0206 0.4093 19.1673 .6496 .0845 -2.08852844 8.6487 -13.3331 278.8154 -61.0922 -149.6042 36.4305 .0000 69.7177	28.7339	-36.7581	.4447	12.0964	.0000	57.5507
1.3890-2.19803.47813.0163.000019.8751.69450.0875-2.1982.00001.7391-13.8034160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177						60.0000
.6945 0.0875 -2.1982 $.0000$ 1.7391 -13.8034 160.3690 -52.6469 -79.5255 24.6928 $.0000$ 63.8488 $.0000$ 63.8488 160.3690 -52.6469 -28.0646 60.0000 УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ 1.3445 -2.0539 10.1523 3.0206 0.4093 19.1673 $.6496$ $.0845$ -2.0885 2844 8.6487 -13.3331 278.8154 -61.0922 -149.6042 36.4305 $.0000$ 69.7177	УГОЛ ПОВ	ОРОТА КРИ		90.000 ΓPA)	ЦУСОВ	
160.3690-52.6469-79.525524.6928.000063.8488.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177						
.000063.8488160.3690-52.6469-28.064660.0000УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ1.3445-2.053910.15233.02060.409319.1673.6496.0845-2.088528448.6487-13.3331278.8154-61.0922-149.604236.4305.000069.7177						
УГОЛ ПОВОРОТА КРИВОШИПА = 105.000 ГРАДУСОВ 1.3445		-52.6469				
1.3445 -2.0539 10.1523 3.0206 0.4093 19.1673 .6496 .0845 -2.0885 2844 8.6487 -13.3331 278.8154 -61.0922 -149.6042 36.4305 .0000 69.7177						60.0000
.6496 .0845 -2.0885 2844 8.6487 -13.3331 278.8154 -61.0922 -149.6042 36.4305 .0000 69.7177	УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	105.000 ΓPA	ДУСОВ	
278.8154 -61.0922 -149.6042 36.4305 .0000 69.7177						
.0000 69.7177 278.8154 -61.0922 -44.3631 60.0000						
	.0000	69.7177	278.8154	-61.0922	-44.3631	60.0000

Приложение 2 Образец распечатки результатов расчёта на PC по программе A2T

0.1750	1.4000	1.0000	0.0050	12.5664	0.7000
7.0000	10.50000	0.2200	0.0	0.0	0.2000
1.5750	1400.0000	1.4000	1400.0000	1.2250	1100.0000
0	0.0	0.0			
УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	0.0 ГРАДУС	COB	
1					
-1535.2461	34.3350	1353.8923	54.3349	0.0000	768.6680
-0.0004	-631.3279	-1532.2461	54.3350	6.0086	
2					
-1.2250	0.0	-24.1805	0.0	1.5700	0.0
-0.5285	0.0000	-0.0000	1.0994	-25.9077	-0.0000
-1015.2449	33.6875	1653.98.11	34.9855	153.7340	730.2112
126.2652	-600.2239	-1815.2449	33.6875	21.2516	1099.9973
УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	15.000 ΓΡΑ	ЦУСОВ	
1					
-1550.4880	-31.0537	1362.12430	74.9602	0.0005	797.3167
-0.0004	-619.6214	-1538.4888	-31.0537	64.4340	
2					
-1.2362	-0.5004	-23.6967	0.0324	1.5101	-5.0370
-0.5506	0.0226	-0.5345	1.0621	-25.1950	-3.5762
-1821.8760	-40.8500	1645.5119	84.4872	159.4630	771.2112
123.9239	-583.7190	-1821.8760	-40.8508	91.0015	1113.3093
УГОЛ ПОВ	OPOTA KPI	ІВОШИПА =	30.000 ГРАД	ЦУСОВ	
1					
-1545.5911	-93.0946	1384.1565	113.4035	0.0005	840.7500
-0.0004	-624.3416	-1545.5911	-93.0946	121.1303	
2					
-1.2457	-0.9803	-22.1917	0.0628	1.3630	-0.7726
-0.5471	0.0438	-1.0399	0.9522	-23.0621	-6.9837
-1838.6009	-112.0152	1677.1743	132.3242	168.1505	818.6467
124.8699	-583.3176	-1838.6089	-112.0152	159.3857	1151.1440
УГОЛ ПОВ	ОРОТА КРИ	ІВОШИПА =	45.000 ΓPA)	ЦУСОВ	
1					
-1349.2106	-147.6787	1412.7480	147.9560	0.0006	893.8520
-0.0004	-642.8916	-1349.2156	-147.6787	173.4313	
2					
-1.2700	-1.4170	-19.3271	0.0005	1.1151	-13.0022
-0.5733	0.0619	-1.4060	0.7775	-19.5340	-9.7704
-1856.5645	-173.4393	1719.5269	175.7166	178.7711	875.4553
128.5779	-506.7341	-1856.5645	-175.4593	223.5909	1207.4426

Список литературы

- 1. Фролов К.В. и др. Теория механизмов и механика машин: Учеб. для втузов. М.: Высшая школа, 2001. 496 с.
- 2. Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин. М.: Высшая школа, 2002. 412 с.

Министерство образования и науки Российской Федерации ЛФ КНИТУ-КАИ

СИНТЕЗ ПЛАНЕТАРНЫХ МЕХАНИЗМОВ

Учебное пособие для выполнения курсовой работы по курсу «Теория механизмов и машин»

Лениногорск 2016

Настоящие методические указания предназначены для студентов, выполняющих расчетно-графическую или курсовую работу по теории механизмов и машин.

Данные указания включают в себя необходимый материал для синтеза рядовых, планетарных и комбинированных редукторов, заключающегося в разбивке общего передаточного отношения по двум ступеням и подборе чисел зубьев колес.

В пособии изложены методики синтеза редуктора с минимальными габаритными размерами и кинематического анализа выбранного варианта редуктора, а именно определение чисел оборотов всех звеньев редуктора графоаналитическим методом.

1.Типы ступеней, применяемых при расчете

Виды применяемых при расчете ступеней изображены на рис.1 – 9, а возможные диапазоны их передаточных отношений приведены в табл.1 (в подрисуночных подписях в скобках – номера схем ступеней в комбинированном редукторе).

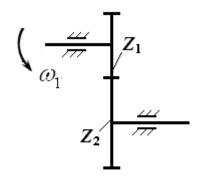


Рис.1. Рядовая ступень с внешним зацеплением (№1)

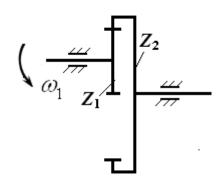


Рис.2.Рядовая ступень с внутренним зацеплением (№2)

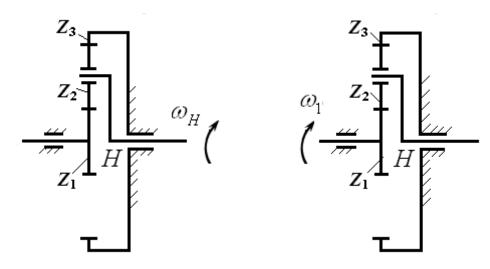


Рис.3.Планетарная ступень (№3)

Рис.4.Планетарная ступень (№4)

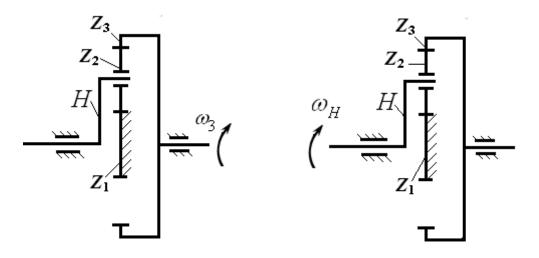


Рис.5.Планетарная ступень (№5)

Рис.6.Планетарная ступень (№6)

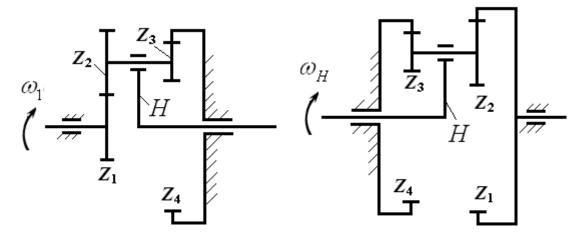


Рис.7.Планетарная ступень со сдвоенными сателлитами (№7)

Рис.8.Планетарная ступень со сдвоенными сателлитами (№8)

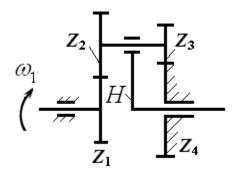


Рис.9.Планетарная ступень со сдвоенными сателлитами (№9)

Планетарные ступени со сдвоенными сателлитами могут применяться в качестве редукторов и мультипликаторов. Поэтому в табл.1 для этих ступеней указаны по два возможных диапазона передаточных чисел. Значения передаточных чисел, превосходящих единицу, относятся к редукторам.

При выборе конкретного передаточного числа для ступеней со сдвоенными сателлитами необходимо выбрать его целым, если ступень применяется в качестве редуктора, и десятыми долями единицы, если ступень применяется в качестве мультипликатора.

Таблица 1

Номер схемы ступени	Диапазон возможных передаточных чисел	Номер схемы ступени	Диапазон возможных передаточных чисел
1	37	7	530
2	37	,	0,10,35
3	0,120,44	8	32200
4	2,39	O	0,50,9
5	1,131,77	9	830
6	0,560,88		0,20,9

2. Расчетные формулы для передаточных отношений ступеней

Формулы для расчета передаточных отношений ступеней, применяемых в типовых заданиях для курсовых работ, представлены в табл.2

Таблица 2

Номер схемы ступени	Формула для расчета передаточного отношения	Номер схемы ступени	Формула для расчета передаточного отношения
1	$i_{12} = -\frac{z_2}{z_1}$	7	$i_{1H} = 1 + \frac{z_4 \cdot z_2}{z_3 \cdot z_1}$
2	$i_{12} = \frac{z_2}{z_1}$	·	$i_{H1} = \frac{z_3 \cdot z_1}{z_3 \cdot z_1 + z_4 \cdot z_2}$
3	$i_{H1} = \frac{z_1}{z_1 + z_3}$	8	$i_{H1} = \frac{1}{1 - (z_4 \cdot z_2)/(z_3 \cdot z_1)}$
4	$i_{1H} = 1 + \frac{z_3}{z_1}$	C	$i_{1H} = 1 - \frac{z_4 \cdot z_2}{z_3 \cdot z_1}$
5	$i_{3H} = 1 + \frac{z_1}{z_3}$	9	$i_{H1} = \frac{1}{1 - (z_4 \cdot z_2)/(z_3 \cdot z_1)}$
6	$i_{H3} = \frac{z_3}{z_1 + z_3}$		$i_{1H} = 1 - \frac{z_4 \cdot z_2}{z_3 \cdot z_1}$

3. Порядок расчета редукторов

- 1. Определение типов ступеней, применяемых при синтезе и анализе.
- 2. Расчет общего передаточного отношения редуктора по заданным числам оборотов на его входе и выходе.
 - 3. Разбивка общего передаточного отношения редуктора по ступеням.
 - 4. Определение чисел зубьев колес.
 - 5. Обределение габаритных размеров редуктора.
 - 6.Определение чисел оборотов зубчатых колес редуктора.

Определение чисел зубьев колес для рядовой ступени внешнего зацепления (\mathbb{N} 1) производится при условии отсутствия подрезания ножки зуба, которое соблюдается при числе зубьев колеса $z \ge 17$.

При подборе чисел зубьев у рядовой и планетарной передач (рис.10а,б) с зубчатыми парами внутреннего зацепления должно быть соблюдено условие отсутствия интерференции (пересечение профилей и заклинивание зубъев), которое выдерживается при определенном соотношении зубьев колес [1]. Соотношение между числами зубьев колес внутреннего зацепления приведено в табл.3.

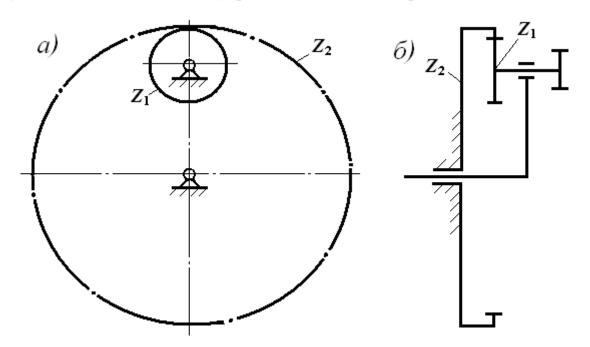


Рис.10.Схемы зубчатых пар внутреннего зацепления: а – рядовой передачи; б – части планетарной передачи со сдвоенными сателлитами

Таблица 3

Число зубьев шестерни	Число зубьев колеса с внутренними зубьями	Число зубьев шестерни	Число зубьев колеса с внутренними зубьями
18	> 144	24	> 38
19	> 81	25	> 36
20	> 60	26	> 35
21	> 50	$\leq (z_2 + 8)$	2779
22	> 44	< (7 + 7)	> 80
23	> 41	$\leq (z_2 + 7)$	_ 50

Одним из методов подбора чисел зубьев планетарных передач является метод сомножителей, при котором подбор зубьев ведётся по условиям, обеспечивающим получение заданного передаточного отношения и соосности, а проверка проводится по условию сборки.

Для различных схем планетарных передач условие соосности может быть выражено различными формулами, которые приведены в табл.4.

Так как передаточное отношение каждой ступени предварительно определяется до подбора чисел зубьев, то отношение чисел зубьев для планетарных ступеней можно определить из формул для расчета передаточного отношения (см. табл.2). Для различных планетарных ступеней эти отношения представлены в табл.5.

Таблица 4

Номер схемы ступени	Формула, выражающая условие соосности	Номер схемы ступени	Формула, выражающая условие соосности
3 - 6	$z_1 + 2 \cdot z_2 = z_3$	8	$z_1 - z_2 = z_4 - z_3$
7	$z_1 + z_2 = z_4 - z_3$	9	$z_1 + z_2 = z_4 + z_3$

Таблица 5

Номер схемы ступени	Формула для определения отношения чисел зубьев	Номер схемы ступени	Формула для определения отношения чисел зубьев
3 - 6	$\frac{z_3}{z_1} = i_{1H} - 1$	8	$\frac{z_4 \cdot z_2}{z_3 \cdot z_1} = -i_{1H} + 1$
7	$\frac{z_4 \cdot z_2}{z_3 \cdot z_1} = i_{1H} - 1$	9	$\frac{z_4 \cdot z_2}{z_3 \cdot z_1} = -i_{1H} + 1$

Учитывая, что отношение чисел зубьев может быть величиной только положительной, принимаем вышеуказанное отношение зубьев для всех ступеней равным $i_{1H}-1$.

Рассмотрим сущность этого метода на примере планетарного механизма с двойным сателлитом, изображенного на рис. 9.

Так как
$$i_{1H}=1-i_{13}^H$$
, то $i_{13}^H=1-i_{1H}$, но $i_{13}^H=\frac{z_4\cdot z_2}{z_3\cdot z_1}$.

Ввиду того что числа зубьев неизвестны, заменяем числа зубьев сомножителями

$$i_{13}^H = \frac{D \cdot B}{C \cdot A}.$$

Из условия соосности

$$A+B=(C+D)\cdot\alpha$$
.

Тогда

$$\alpha = \frac{A+B}{C+D}$$

После подстановки

$$A(C+D) + B(C+D) = C(A+B) + D(A+B)$$

И

$$z_1 = A \cdot (D + C) \cdot \gamma;$$
 $z_3 = C \cdot (A + B) \cdot \gamma;$

$$z_2 = B \cdot (D + C) \cdot \gamma;$$
 $z_4 = D \cdot (A + B) \cdot \gamma,$

где γ – любое целое число.

Рекомендуется принимать:

при внешнем зацеплении $z \ge 17$;

при внутреннем зацеплении колесо с внешними зубьями $z \ge 20$;

при внутреннем зацеплении колесо с внутренними зубьями $z \ge 85$.

Формулы для определения чисел зубьев различных ступеней со сдвоенными сателлитами приведены в табл.6.

Таблица 6

Номер схемы ступени	Формулы для опред	еления чисел зубьев
7	$z_1 = A \cdot (D - C)$ $z_2 = B \cdot (D - C)$	$z_3 = C \cdot (A + B)$ $z_4 = D \cdot (A + B)$

8	$z_1 = A \cdot (D - C)$ $z_2 = B \cdot (D - C)$	$z_3 = C \cdot (A - B)$ $z_4 = D \cdot (A - B)$
9	$z_1 = A \cdot (D + C)$ $z_2 = B \cdot (D + C)$	$z_3 = C \cdot (A + B)$ $z_4 = D \cdot (A + B)$

Пример.

Необходимо определить числа зубьев ступени №7 со сдвоенными сателлитами соблюдая условие соосности при $i_{1H} = 10$. Отношение чисел зубьев равно:

$$\frac{z_4 \cdot z_2}{z_3 \cdot z_1} = \frac{D \cdot B}{C \cdot A} = i_{1H} - 1 = 9.$$

Так как колесо с числом зубьев z_4 по размеру должно быть больше колеса с числом зубьев z_3 (рис.7), то число D должно тоже быть больше числа C.

Определяем путем подбора сомножители A, B, C, D:

$$\frac{D \cdot B}{C \cdot A} = 9 = \frac{9 \cdot 1}{1 \cdot 1}.$$

Отсюда имеем:

$$D = 9$$
, $B = 1$, $C = 1$, $A = 1$.

Числа зубьев равны:

$$z_1 = A \cdot (D - C) = 1 \cdot (9 - 1) = 8;$$
 $z_2 = B \cdot (D - C) = 1 \cdot (9 - 1) = 8;$ $z_3 = C \cdot (A + B) = 1 \cdot (1 + 1) = 2;$ $z_4 = D \cdot (A + B) = 9 \cdot (1 + 1) = 18.$

Числа зубьев колес можно увеличить на одинаковое для всех сомножителей целое число, сохраняя при этом соосность колес. Для данного примера возможен другой вариант разбивки на сомножители:

$$\frac{D \cdot B}{C \cdot A} = 9 = \frac{3 \cdot 3}{1 \cdot 1}.$$

Отсюда имеем:

$$D = 3$$
, $B = 3$, $C = 1$, $A = 1$.

Числа зубьев колес равны:

$$z_1 = 1 \cdot 2 = 2$$
, $z_2 = 3 \cdot 2 = 6$, $z_3 = 1 \cdot 4 = 4$, $z_4 = 3 \cdot 4 = 12$.

При подборе чисел зубьев планетарных ступеней со сдвоенными сателлитами должно быть соблюдено условие соседства, заключающееся в том, что рядом расположенные сателлиты не должны касаться друг друга (рис.11).

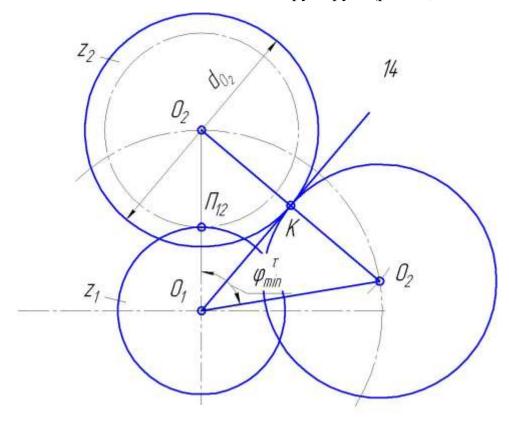


Рис.11.Схема расположения сателлитов

При этом количество сателлитов определяется из условия:

$$k \leq 2\pi/\varphi_{\min}$$
,

где $\, \phi_{
m min} \, - \,$ минимальный угол между сателлитами. Этот угол равен:

$$\varphi_{\min} = 2 \arcsin \frac{d_{a2}}{d_{w1} + d_{w2}}$$

где d_{a2} — диаметр окружности вершин сателлита;

 d_{w1}, d_{w2} — диаметры начальных окружностей центрального колеса и сателлита соответственно.

Для устранения возможности трения при касании цилиндров вершин соседних сателлитов предусматривают наличие между ними минимального гарантированного зазора $u \ge 0.5\,\mathrm{mm}$, тогда

$$\varphi_{\min} = 2\arcsin\frac{d_{a2} + u}{d_{w1} + d_{w2}}.$$

В случае сдвоенного сателлита $\,d_{a_{\scriptscriptstyle 2}}\,$ берётся для большего из них.

При определении чисел зубьев планетарных ступеней необходимо учитывать также условие сборки. Условие сборки заключается в том, что зубья всех сателлитов должны быть во впадинах ответных колес. На рис.12 показано положение центральных колёс механизма при установке первого сдвоенного сателлита.

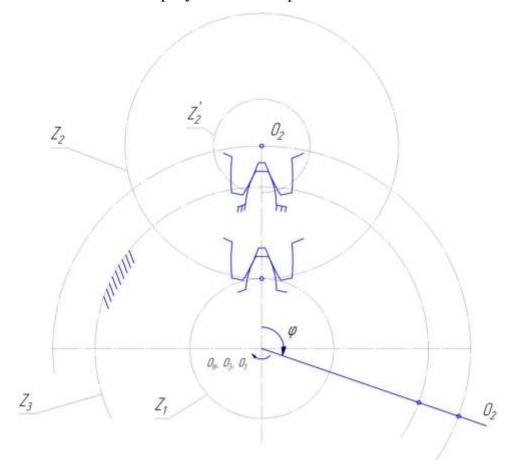


Рис.12.Схема расположения зубьев сателлита

При выбранном значении число сателлитов k угол между ними $\varphi = \frac{2\pi}{k}$.

Для того, чтобы установить при сборке второй сателлит под углом φ к первому, повернём водило на угол $\varphi_{\scriptscriptstyle H}$, который может быть равным

$$\varphi_{H} = \varphi + 2\pi \cdot p = \frac{2\pi}{k} (1 + k \cdot p),$$

где p – любое целое число.

При повороте водила на угол $\varphi_{\scriptscriptstyle H}$ первое колесо повернётся на угол

$$\varphi_1 = \varphi_H \cdot i_{1H}.$$

Для того, чтобы второй сателлит мог быть поставлен на место, которое занимал первый до поворота водила, необходимо чтобы первое колесо повернулось на целое число угловых шагов, что и обеспечивает одинаковое взаимное расположение зубьев центральных колёс z_1 и z_2 , т.е.

$$\varphi_1 = C \cdot \frac{2\pi}{z_1}.$$

Подставляя первое и третье выражения во второе получим

$$C \cdot \frac{2\pi}{z_1} = \frac{2\pi}{k} (1 + k \cdot p) \cdot i_{1_H},$$

откуда

$$C = \frac{z_1 \cdot i_{1H}}{k} (1 + k \cdot p).$$

Из полученного следует, что если при каком-либо значении p возможно получение целого значения C, то сборка механизма возможна.

В простейшем случае сборки при p=0. Тогда

$$C = \frac{z_1 \cdot i_{1_H}}{k}.$$

Если ни при одном из значений p значение C не будет целым, то сборка такого механизма невозможна и следует менять k или числа зубьев.

Для планетарных ступеней №3 – №6 при количестве сателлитов равном двум условие сборки выполняется всегда. Передаточное отношение от первого колеса к водилу для этих ступеней равно

$$i_{1H} = \frac{z_1 + z_2}{2}$$
.

Тогда целое число определится из уравнения

$$C = \frac{(z_1 + z_3)(1 + 2p)}{2}$$
.

Так как число зубьев $z_3=z_1+2z_2$, то при нечетном числе z_1 число z_3 тоже нечетное, а при четном его значении z_3 – четное. Следовательно, сумма z_1+z_3 кратна двум при любом значении чисел зубьев, а отсюда C является целым числом.

За габаритные размеры редуктора при синтезе принимается наибольший размер одной из ступеней или ее частей (рис.13).

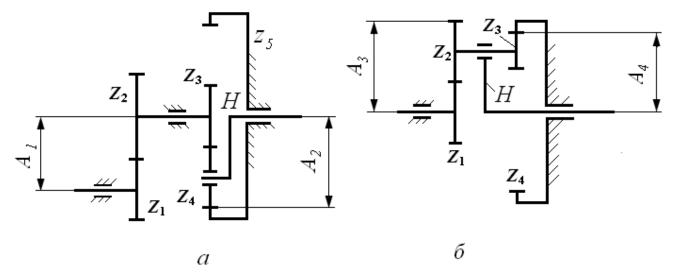


Рис.13.К определению габаритных размеров: a – комбинированного редуктора; δ —ступени со сдвоенными сателлитами.

Так как модули всех колес для каждого редуктора одинаковы, то габаритные размеры ступеней можно определить через соотношение чисел зубьев. Формулы для определения габаритных размеров различных ступеней приведены в табл.7

Таблица 7

Номер схемы	Формулы для	Номер схемы	Формулы для

ступени	определения габаритных размеров	ступени	определения габаритных размеров
1	$z_1 + 2 \cdot z_2$	2	z_2
3 – 6	z_3	8	z_1
	$z_1 + 2 \cdot z_2$		Z ₄
7	z_4	9	$z_1 + 2 \cdot z_2$
			$z_4 + 2 \cdot z_3$

Из двух вариантов редукторов в расчете выбирается редуктор с меньшими габаритными размерами.

Для редуктора с минимальными габаритными размерами производится расчет чисел оборотов всех звеньев. Числа оборотов зубчатых колес различных ступеней определяются аналитическим методом по формулам, которые приведены в табл.8, и графическим способом.

Таблица 8

Номер схемы ступени	Формулы для определения чисел оборотов	Номер схемы ступени	Формулы для определения чисел оборотов
1	$n_2 = -\frac{n_1 \cdot z_1}{z_2}$	3	$n_1 = n_H \left(1 + \frac{z_3}{z_1} \right)$
2	$n_2 = \frac{n_1 \cdot z_1}{z_2}$		$n_2 = n_H \left(1 - \frac{z_3}{z_2} \right)$
4	$n_{H} = \frac{n_{1}}{1 + \frac{z_{3}}{z_{1}}} $ 7	7	$n_{H} = \frac{n_{1}}{1 + \frac{z_{4} \cdot z_{2}}{z_{3} \cdot z_{1}}}$
	$n_2 = n_H \left(1 - \frac{z_3}{z_2} \right)$		$n_2 = n_3 = n_H \left(1 - \frac{z_4}{z_3} \right)$
5	$n_H = \frac{n_3}{1 + \frac{z_1}{z_3}}$	8	$n_1 = n_H \left(1 + \frac{z_4 \cdot z_2}{z_3 \cdot z_1} \right)$

	$n_2 = n_H \left(1 + \frac{z_1}{z_2} \right)$		$n_2 = n_3 = n_H \left(1 - \frac{z_4}{z_3} \right)$
6	$n_3 = n_H \left(1 + \frac{z_1}{z_3} \right)$	9	$n_H = \frac{n_1}{\frac{z_4 \cdot z_2}{z_3 \cdot z_1} - 1}$
	$n_2 = n_H \left(1 + \frac{z_1}{z_2} \right)$		$n_2 = n_3 = n_H \left(1 + \frac{z_4}{z_3} \right)$

Обозначения колес в табл.8 соответствуют рис.1 – 9. Угловая скорость колес может быть определена по формуле

$$\omega = \frac{\pi \cdot n}{30},$$

где n —число оборотов.

Число оборотов или угловая скорость выходного звена редуктора не должны отличаться от заданного значения больше, чем на \pm 5%.

4. Пример расчета

Исходные данные для расчета:

- 1. Структурная схема комбинированного редуктора (рис. 14).
- 2. Число оборотов на входе редуктора
 $n_1 = n_{\rm дв} = 900$ об/мин.
- 3. Число оборотов на выходе редуктора $n_6 = 40$ об/мин.
- 4. Модуль зубчатых колес передачи m = 3 мм.

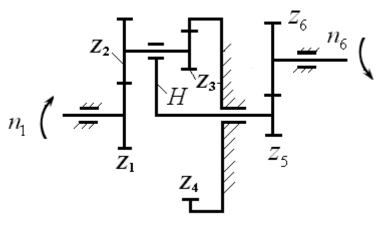


Рис.14

Необходимо выполнить синтез данного планетарного редуктора (найти все z_i) обеспечивающие работоспособность и заданные передаточные отношения.

Решение.

1.Разбивка общего передаточного отношения по ступеням (первая ступень планетарная i_{1H} и вторая ступень рядовая i_{56}).

$$i_{oби} = \frac{n_1}{n_6} = \frac{900}{40} = 50;$$
 $i_{oби} = i_{1H} \cdot i_{56}.$

Обычно для такой планетарной ступени рекомендуется принимать $i_{1H}=5...30$ (см. табл.1). Для цилиндрической зубчатой передачи $i_{56}=3...7$.

Принимаем $i_{1H} = 15$, тогда

$$i_{56} = \frac{i_{o \delta u u}}{i_{1H}} = \frac{50}{15} = \frac{10}{3}$$
.

2.Подбор чисел зубьев планетарного механизма

Подберем числа зубьев планетарной ступени, обеспечивающие $i_{1H}=15\,$ и соосность осей планетарной ступени по вышеизложенным формулам (см. табл.6).

$$z_1 = A(D - C) \gamma$$
; $z_2 = B(D - C) \gamma$; $z_3 = C(A + B) \gamma$; $z_4 = D(A + B) \gamma$. $i_{14}^H = 1 - i_{1H} = 1 - 15 = -14$.

Одновременно

$$i_{14}^H = \left(-\frac{z_2}{z_1}\right) \cdot \left(\frac{z_4}{z_3}\right) = -14.$$

Отсюда возможные варианты значений A, B, C и D:

$$\frac{z_2}{z_1} \cdot \frac{z_4}{z_3} = 14 = \frac{2 \cdot 7}{1 \cdot 1} = \frac{3 \cdot 14}{1 \cdot 3} = \dots = \frac{B \cdot D}{A \cdot C}.$$

Рассмотрим 2 варианта подбора чисел зубьев зубчатых колес.

Вариант 1.

$$z_1 = 1 \cdot (7 - 1) \cdot \gamma = 6\gamma;$$
 $z_2 = 2 \cdot (7 - 1) \cdot \gamma = 12\gamma;$ $z_3 = 1 \cdot (1 + 2) \cdot \gamma = 3\gamma;$ $z_4 = 7 \cdot (1 + 2) \cdot \gamma = 21\gamma.$

С помощью выбора соответствующего γ удовлетворяем рекомендации по выбору $z_i \geq 17$.

Принимаем для внешнего зацепления $z_{iвнешн} \ge 20$, для внутреннего — $z_{iвнут} \ge 85$. Принимаем также γ =7.

Тогда

$$z_1$$
=42, z_2 =84, z_3 =21, z_4 =147.

Вариант 2.

$$z_1 = 1 \cdot (14 - 3) \cdot \gamma = 11\gamma;$$
 $z_2 = 3 \cdot (14 - 3) \cdot \gamma = 33\gamma;$ $z_3 = 3 \cdot (1 + 3) \cdot \gamma = 12\gamma;$ $z_4 = 14 \cdot (1 + 3) \cdot \gamma = 56\gamma.$

Принимаем ү=2.

Тогда

$$z_1=22$$
, $z_2=66$, $z_3=24$, $z_4=112$.

Из двух вариантов выбираем тот, что имеет меньшие габариты, т.е. меньшую сумму зубьев, колес определяющих габариты.

Вариант 1.

$$\frac{z_1 + z_2}{2} = \frac{42 \cdot 84}{2} = 63.$$

Вариант 2.

$$\frac{z_1 + z_2}{2} = \frac{22 \cdot 66}{2} = 44.$$

Выбираем второй вариант.

Определяем числа зубьев колес 4 и 5 с помощью соотношения $i_{56} = \frac{10}{3}$.

Принимаем $z_5 = 18$. Тогда $z_6 = 60$.

3. Определение числа сателлитов

Из условия соседства определим возможное число сателлитов.

$$\varphi_{\min} = 2\arcsin\frac{d_{a2}}{d_{w1} - d_{w2}} = 2\arcsin\frac{z_2^{\max} + 2h_a^*}{z_1 + z_2} = 2\arcsin\frac{66 + 2}{22 + 66} =$$

$$= 2\arcsin 0.772 = 101.198^{\circ}.$$

Число сателлитов k будет

$$k \le \frac{2\pi}{\varphi_{\min}} = \frac{360}{101,98} = 3,56$$
. Отсюда $k = 3$.

4.Проверка возможности сборки.

Условие сборки имеет вид $C = \frac{z_1 \cdot i_{1H}}{k} (1 + k \cdot p).$

При
$$k=3$$
 $C = \frac{22 \cdot 15}{3} (1+3p) = 110 \cdot (1+3p),$

т.е. при любом целом p число C будет целым числом, т.е. сборка возможна.

5.Кинематический расчет редуктора графоаналитическим методом.

Расчет редуктора графоаналитическим методом выполняется в следующей последовательности.

1. Выбор масштабного коэффициента K_ℓ для построения плана механизма. 2.Построение плана механизма (рис. 15,a).

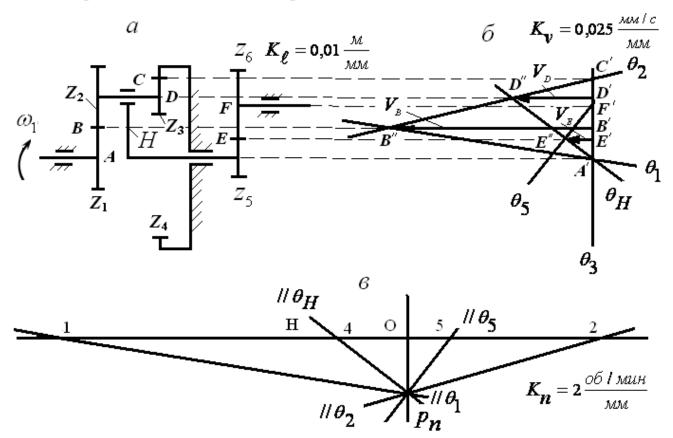


Рис.15. Кинематический анализ механизма графическим методом

- 3. Выбор масштабного коэффициента K_{v} для построения графика линейных скоростей.
 - 4. Построение графика линейных скоростей (рис. 15, 6).
- 5.Выбор масштабного коэффициента K_n для построения плана чисел оборотов зубчатых колес.
 - 6.Построение плана чисел оборотов (рис.15,6).

Построение плана зубчатого механизма необходимо начать с определения масштабного коэффициента из равенства

$$K_{\ell} = \frac{r_1}{\overline{r_1}} = \frac{m \cdot z_1}{2\overline{r_1}},$$

где

m — модуль зацепления;

 z_1 —число зубьев первого колеса;

 $ar{r_1}$ — длина отрезка, изображающего на плане механизма радиус первого зубчатого колеса.

Размеры других отрезков, изображающих радиусы колес, равны

$$\overline{r_i} = \frac{m \cdot z_i}{2K_\ell}.$$

После построения плана редуктора обозначим на чертеже точки контакта колес, оси сателлитов и колес (A, B, C, D, E и F).

Масштабный коэффициент для построения графика линейных скоростей определим из соотношения

$$K_{v} = \frac{V_{B_1}}{\overline{V}_{B_1}},$$

где

 V_{B_1} – скорость точки B_1 первого зубчатого колеса;

 \overline{V}_{B_1} — длина отрезка, изображающего на графике скорость точки B_1 .

Скорость точки B_1 первого колеса равна

$$V_{B_1} = r_1 \cdot \omega_1 = \frac{m \cdot z_1 \cdot \pi \cdot n_1}{60},$$

где

 n_1 — число оборотов первого зубчатого колеса z_1 .

Графики линейных скоростей точек зубчатых колес представлены на рис. $15, \delta$.

Линия распределения скоростей каждого колеса строится по двум точкам, скорости которых известны. Так для первого звена известны скорость точки B_1 , величина которой определяется по вышеуказанной формуле, и скорость оси вращения колеса равная нулю. По этим двум точкам строится график распределения окружных скоростей точек первого звена θ_1 .

Скорость точки C, лежащей на линии касания начальных цилиндров колёс z_3 и z_4 , равна нулю, так как колесо z_4 неподвижно. Проводя прямую через точки B'' и

C' получим линию θ_2 , изображающую графики распределения окружных скоростей точек сателлитов z_2 и z_3 . На этой линии располагается конец отрезка D'D'' скорости точки D, принадлежащей геометрической оси вращения звеньев z_2 и z_3 относительно водила. Соединяя точку D'' с точкой A', получаем линию θ_H графика окружных скоростей точек водила.

На линии θ_H располагается точка E'' конца отрезка, изображающего окружную скорость точки E, лежащей на линии касания начальных цилиндров зубчатых колес z_5 и z_6 , так как угловые скорости вращения водила H и звена z_5 равны. Проводя прямую через точки E'' и F' (окружная скорость точки F, лежащей на оси зубчатого колеса z_6 равна нулю) получаем линию θ_5 графика распределения окружных скоростей точек колеса z_6 .

План угловых скоростей зубчатых колес редуктора приведен на рис.15, в.

Масштабный коэффициент для построения плана чисел оборотов определим из равенства

$$K_n = \frac{n_1}{\overline{n}_1} = \frac{900}{100} = 9, \left[\frac{o6 / Muh}{MM} \right],$$

где

 \overline{n}_{1} — размер отрезка, изображающего на плане чисел оборотов первого звена, мм.

Построение плана чисел оборотов можно начать с отложения на горизонтальной линии отрезка O1, соответствующего числу оборотов первого звена. Далее из конца этого отрезка (точка 1) проводим линию параллельную θ_1 до пересечения ее с вертикальной линией, проведенной из начала отрезка (из точки O). Получим точку пересечения P. Из этой точки проводим линии, параллельные линиям распределения окружных скоростей точек звеньев на графике линейных скоростей. Отрезок O1 пропорционален числу оборотов первого зубчатого колеса, отрезок O2

 числу оборотов второго колеса и т.д. Числа оборотов колес можно определить по формуле

$$n_1 = Oi \cdot K_n$$
,

где

Oi- длина отрезка, соответствующего числу оборотов i-го звена на плане чисел оборотов.

Расчетно-графическая или курсовая работы по синтезу зубчатого механизма заканчивается сравнением данных, полученных графоаналитическим методом, с данными, указанными в задании.

Библиографический список

- 1. Теория механизмов и механика машин: Учебн. для втузов/ Фролов К.В., Попов С.А., Мусатов А.К. и др. М.: Высш. шк., 2001. 496 с.
- 2.Вопилкин Е.А. Расчет и конструирование механизмов приборов и систем. М.: Высшая школа, 1980. 458с.

Содержание

1.Типы ступеней, применяемых при расчете
2. Расчетные формулы для передаточных отношений ступеней
3.Порядок расчета редукторов
4.Пример расчета
Библиографический список

Дополнение к учебному пособию по выполнению курсовой работы по дисциплине «Теория механизмов и машин»

Кинематический и динамический анализ кривошипно-ползунного механизма в APM Dynamics

Задание

- 1. Выполнить построение кинематической схемы центрального кривошипно-шатунного механизма по заданным техническим условиям.
- 2. Провести кинематический анализ полученной схемы (Рис. 1).
- 3. Провести силовой анализ полученной схемы без учета составляющих сил трения в кинематических
- 4. Построить графики законов движения 2-го и 3-го звеньев механизма.
- 5. Построить график уравновешивающего момента и узловых сил.

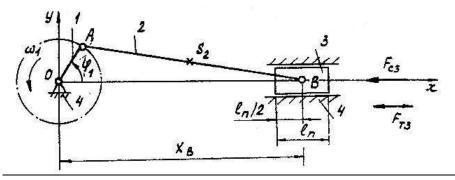


Рис. 1 Схема кривошипно-ползунного механизма.

Механизм имеет следующие исходные данные:

 $S_R = 0.35 \text{ M}.$ Ход поршня

Длина поршня l_{II} =0,22 м.

Длина шатуна AB $l_2 = 1,4$ м. $l_{AS_2} = l_2/2$.

Частота вращения кривошипа $n_1 = 120$ об/мин.

Масса шатуна $m_2=7$ K Γ .

Масса поршня $m_3 = 10,5$ кг.

Перегрузка горизонтальная Π_{Γ} =1,0.

Постоянная сила трения в уплотнениях при движении поршня F_{T3} =60 H.

Сила сопротивления, действующая на поршень:

Радиус цапфы r = 0.02 м.

Коэффициент трения в цапфе f=0,25.

Коэффициент трения в поступательной кинематической паре $f_{\pi} = 0.2.$

Общий порядок расчета

- 1. Построение модели кривошипно-ползунного механизма в APM Dynamics
 - 1.1. Настройка единиц измерения
 - 1.2. Выбор плоскости построения
 - 1.3. Создание базового (начального) узла 1.4. Построение стержневой модели

 - 1.5. Задание шарниров в узлах
 - 1.6. Установка опор
 - 1.7. Создание дополнительного узла на стержне шатуна

- 2. Задание сечений и материала
 - 2.1. Задание сечений
 - 2.2. Назначение материала
- 3. Задание инерционных параметров звеньев
- 4. Задание скорости вращения ведущего звена
- 5. Загружения
- 6. Создание комбинации загружений
- 7. Задание нагрузок
 - 7.1. Силы перегрузки и тяжести
 - 7.2. Сила трения в ползуне
 - 7.3. Сила сопротивления движения ползуна
 - 7.4. Задание графиков для загружений
- 8. Установка датчиков и подключение их к мониторам
 - 8.1. Датчик угла поворота ведущего звена
 - 8.2. Датчики перемещения, скорости и ускорения ползуна
 - 8.3. Датчик уравновешивающего момента
 - 8.4. Датчики сил
- 9. Расчет
- 10. Результаты расчета

Приложение – графическое представление результатов расчета

1. Построение модели кривошипно-ползунного механизма в APM Dynamics

1.1. Настройка единиц измерения

Единицы измерения длины отображаются в строке состояния. Для установки единиц измерения выберете команду меню **Вид / Единицы измерения** или нажмите кнопку панели инструментов **Установки**. В диалоговом окне «Единицы» выберете: Длины – [мм], Градусы – [рад].

1.2. Выбор плоскости построения

Создавать модель можно в любом из четырех окон, при этом она будет автоматически отображаться на всех остальных видах.

Рассматриваемый пример является плоским механизмом. Построение механизма удобно выполнить в плоскости ХҮ. Выберете в качестве активного любой вид, например «Вид спереди», и нажмите кнопку Поворот вида панели инструментов Видовая плоскость (команда меню Вид/Поворот...). В появившемся диалоговом окне (Рис. 2) введите угол Theta = -90 град., Phi = 0 град. и нажмите кнопку «Ок».

Дальнейшее построение будем вести в активном виде.

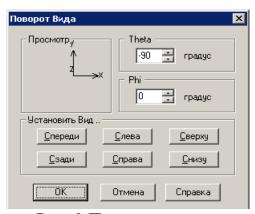


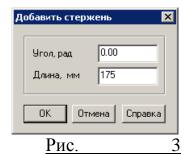
Рис. 2 Поворот вида.

1.3. Создание базового (начального) узла

Построение модели начинаем с того, что в произвольном месте выбранного окна ставим начальный (базовый) узел: нажимаем кнопку

Новый узел панели инструментов Нарисовать (меню Рисование/Узел/По координатам) и щелкаем ЛЕВОЙ кнопкой мыши в произвольной точке поля выбранного вида. Для удобства можно задать точные координаты узла. Если в режиме

Новый узел щелкнуть ПРАВОЙ кнопкой мыши по узлу, то в появившемся диалоговом окне можно точно ввести с клавиатуры координаты узла (0, 0, 0).


Включить отображение на модели номеров узлов можно, нажав кнопку • Homepa узлов панели инструментов Фильтры вида (панель Фильтры вида расположена в нижней части окна *APM Dynamics*).

1.4. Построение стержневой модели

Для рисования стержня 0-1 кривошипа выберете команду

Стержень по длине и углу панели инструментов Рисование (команда меню Рисование/Стержень/По длине и углу) затем щелкните левой кнопкой мыши на установленном ранее начальном узле и переместите курсор так, чтобы стержень потянулся за курсором. Нажмите ПРАВУЮ клавишу мыши для ввода параметров стержня (угол наклона и длина). В появившемся диалоговом окне (Рис. 3) задайте угол наклона и длину, в соответствии с рисунком.

Угол отсчитывается от горизонтальной оси вида против часовой стрелки.

<u>Диалоговое окно</u> Добавить

стержень.

После отрисовки стержня команда остается активной. Аналогичным образом построим стержень 1-2 шатуна: ЛЕВОЙ кнопкой мыши по последнему построенному узлу 1, нажимаем ПРАВУЮ кнопку мыши и в диалоговом окне вводим: Угол – 0 град, Длина – 1400 мм.

1.5. Задание шарниров в узлах

Для задания шарниров нажмите кнопку **шарнир всем** узлам панели инструментов **Рисование** (команда меню **Рисование/Шарнир/В узле/Создать всем**). В появившемся диалоговом окне (Рис. 4) отметьте «Поворот вокруг оси Z» и нажмите кнопку «Ок». Ось Z глобальной системы координат направлена на пользователя перпендикулярно вида. Шарниры будут автоматически созданы во всех узлах. Если шарниры необходимо установить не во всех узлах следует воспользоваться командой **Рисование/Шарнир/В узле/Создать выделенным** предварительно выделив необходимые узлы.

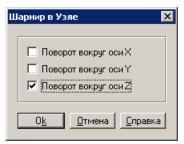


Рис. 4 Диалоговое

<u>окно</u> Шарнир в Узле.

1.6. Установка опор

Для корректной работы необходимо задать опоры в узлах 0 и 2. Для этого нажмите кнопку **Опора** панели инструментов **Рисование** (команда меню **Рисование/Опора**) и щелкните по узлу 0. В появившемся диалоговом окне «Установка опоры» (Рис. 5) разрешите поворот только вокруг оси Z глобальной системы координат. Затем щелкните по узлу 2 и разрешите перемещение по оси X и поворот вокруг оси Z (Рис. 6).

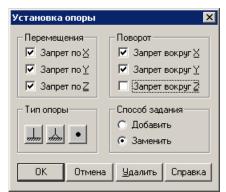


Рис. 5 Опора в узле 0.

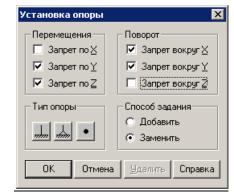


Рис. 6 Опора в узле 2.

1.7. Создание дополнительного узла на стержне шатуна

Для задания сосредоточенной массы, момента инерции и силы тяжести шатуна необходимо создать в центре стержня дополнительный узел. Для этого выберете команду Разбить стержень (меню Рисование/Стержень/Разбить стержень), затем укажите стержень шатуна. Количество элементов задается в диалоговом окне: 2.

2. Задание сечений и материала

При решении данной задачи удобно использовать сосредоточенные массы и момент инерции. Однако для проведения расчета сечение и материал должны быть заданы. Зададим сечение достаточно большой жесткости, например «1000x1000» из библиотеки «Квадратные бетонные» и материал со свойствами стали, но плотностью, близкой к 0.

2.1. Задание сечений

Для задания сечения «1000х1000», Вы можете использовать стандартные библиотеки сечений, поставляемые с системой *APM WinMachine*. Зададим сечение всем стержням. Нажмите кнопку **Сечение всем** панели инструментов **Свойства** (команда меню **Свойства/Сечение всей Конструкции**), после этого появится диалоговое окно «Библиотека» (Рис. 7).

Для загрузки требуемой библиотеки нажмите кнопку «Загрузить» и укажите путь к этой библиотеке. Стандартные библиотеки находятся в папке, где установлена система APM WinMachine. По умолчанию это *C:\Program Files\APM WinMachine....* После загрузки библиотеки выберете сечение «1000x1000» и нажмите «Ок». После этого система предложит подтвердить задание всем стержням выбранного сечения.

Рис. 7 Библиотека сечений.

2.2. Назначение материала

Нажмите кнопку Материалы панели инструментов Свойства (команда меню Свойства/Материалы). В окне «Материалы» необходимо нажать кнопку «Добавить». В появившемся диалоговом окне измените значение поля «Плотность, кг/м³» на 0,01 (это минимальная плотность, которую можно ввести) и нажмите кнопку «Ок». После этого новый «Материал 0» будет добавлен в список материалов текущего документа. Выберете «Материал 0» в списке и нажмите кнопку «Задать всем».

3. Задание инерционных параметров звеньев

Для задания инерционных параметров воспользуйтесь командой Масса в узле панели инструментов Нарисовать (меню Редактирование/Масса в узле). Затем укажите узел 2 и в появившемся диалоговом окне введите инерционные параметры (Рис. 8).

Для центра масс шатуна – узла 3 аналогично введите следующие инерционные параметры:

Масса по X [кг]: **7** Масса по Y [кг]: **7** Масса по Z [кг]: **7**

Момент инерции вокруг Z [кг*м^2]: 1.65

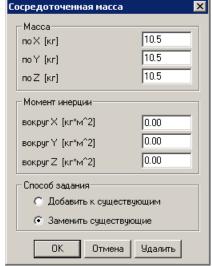


Рис. 8 Диалоговое окно

Сосредоточенная масса.

4. Задание скорости вращения ведущего звена

Для задания скорости вращения необходимо выделить ведущее звено вместе с узлом 0. Сделать это удобно СЕКУЩЕЙ рамкой с помощью команды Выбрать Группу панели инструментов Нарисовать (меню Редактирование/Выбрать группу элементов). Указатель мыши примет форму прямоугольной рамки. Выбор группы элементов происходит посредством выделения их рамкой при нажатой левой кнопке мыши, причем результат выполнения этой процедуры зависит от того, в каком направлении рисуется рамка.

ОХВАТЫВАЮЩАЯ рамка рисуется слева направо. Такой рамкой будут выделены все элементы, которые ПОЛНОСТЬЮ в нее попадут.

СЕКУЩАЯ рамка рисуется справа налево. Это означает, что все элементы модели, у которых в рамку попадет хотя бы ОДИН УЗЕЛ, будут выделены.

Далее активируйте команду ^{fx} **Закон движения** панели инструментов **APM Dynamics**. В появившемся диалоговом окне (Рис. 9) выберете: *Скорость*, Степень свободы — *Угловая вокруг оси Z*; в поле «Постоянное значение» введите **12.56** рад/с.

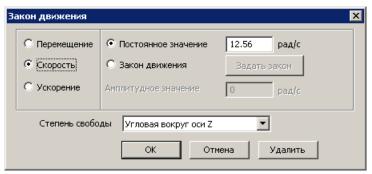
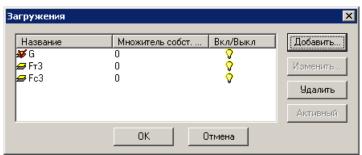


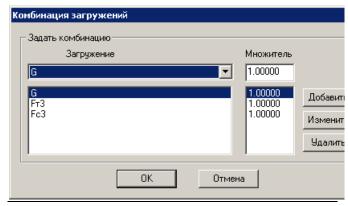
Рис. 9 Диалоговое окно задания закона движения.

5. Загружения

Для задания нагрузок в разные фазы работы кривошипно-ползунного механизма необходимо создать загружения. Команда меню **Нагрузки/Загружения...**) вызывает диалоговое окно редактирования загружений (Рис. 10).

С помощью кнопки *«Добавить…»* создайте еще два загружения. Для редактирования названия выберете загружение и нажмите кнопку *«Изменить…»*.




Рис. 10 Диалоговое окно Загружения.

6. Создание комбинации загружений

Для учета всех сил необходимо создать комбинацию совместно действующих загружений.

Команда загружений... меню Нагрузки вызывает соответствующее диалоговое окно (Рис. 11). Чтобы добавить загружение в комбинацию нужно его выбрать в выпадающем списке и нажать кнопку «Добавить». По умолчанию множитель равен 1.

Комбинация загружений представляет собой линейное сочетание загружений.

<u>Рис. 11 Диалоговое окно Комбинация</u> загружений.

7. Задание нагрузок

7.1. Силы перегрузки и тяжести

Поскольку сила тяжести задана в [кгс] удобно выбрать данные единицы с помощью команды Единицы панели инструментов Установки (меню Вид/Единицы).

Рассмотрим принцип задания сосредоточенных сил на примере силы перегрузки и тяжести ползуна.

- сила перегрузки проекция X = -10.5 кгс;
- силы тяжести проекция Y = -10.5 кгс.
 Аналогично задайте силы в центре

Аналогично задайте силы в центре шатуна (узел 3) для загружения «G»:

- сила перегрузки проекция X = -7 кгс;
- силы тяжести проекция Y = -7 кгс.

Сила X Загружение G Система координат <u>И</u>мя Декартова Сферическая Индекс Проекции Сферические координаты: -10.5 Х,кгс Модуль, кго -10.5 -1.5707963268 Tetha, pag. Ү, кгс Г 1.5707963268 Z, кгс Phi, pag Отмена <u> Удалить</u> <u>С</u>правка

Рис. 12 Задание Силы в узле.

7.2. Сила трения в ползуне

Поскольку сила трения и сопротивления заданы в [Н] удобно выбрать данные единицы с помощью команды Единицы панели инструментов Установки (меню Вид/Единицы).

Сила трения действует противоположно движению ползуна. Поэтому ее задание осуществляется в два этапа – приложение сосредоточенной силы в отдельном загружении и ввод графика загружения от времени.

Задайте сосредоточенную силу с помощью команды **Сила к узлу** аналогично силе тяжести. В диалоговом окне «Сила» для загружения «Fт3» введите значение нагрузки в направлении X 60 H.

7.3. Сила сопротивления движения ползуна

Сила трения действует только в фазе рабочего хода ползуна. Поэтому ее задание, также как и силы трения, осуществляется в два этапа.

Задайте сосредоточенную силу с помощью команды . Сила к узлу аналогично силе тяжести. В окне «Сила» для загружения «Fc3» введите значение нагрузки в направлении X -1 H.

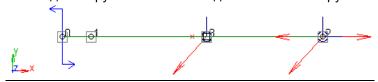
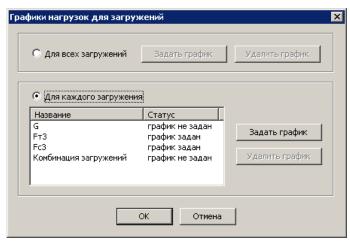


Рис. 13 Расчетная модель после задания нагрузок.


7.4. Задание графиков для загружений

Команда **График нагрузки** панели **Нагрузки** (меню **Нагрузки/График нагрузки)** вызывает диалоговое окно (Рис. 11). Выберете «Для каждого загружения».

Задать график следует прежде всего для загружений **Fт3** и **Fc3**.

Рассмотрим задание графика для силы сопротивления. Выберете загружение **Fт3** и нажмите кнопку «Задать график». При этом загрузится редактор функций (Рис. 15).

Нажатие кнопки **Таблица** приводит к открытию диалогового окна *Функция* (Рис. 16). В этом окне перечислены участки кусочнонепрерывной функции с указанием граничных координат.

<u>Рис. 14 Задание графиков для каждого загружения.</u>

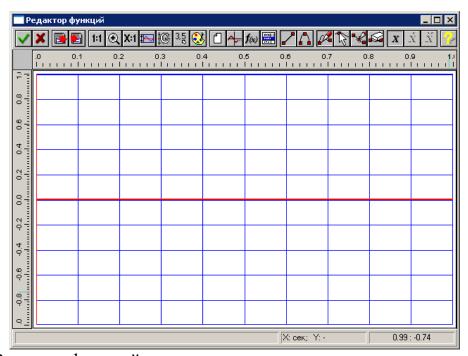


Рис. 15 Редактор функций.

ункция		
Эбъект	Левая точка	📤 🛮 Добавить
Линия	0.0; 1.0)	Вставить
Линия	0.25; 1.0)	
Линия	0.25; -1.0)	<u>И</u> зменить
		<u> </u>
		Гок
		_
		Справка

Рис. 16 Диалоговое окно Функция с участками графика.

Нажмите кнопку «Добавить...» в диалоговом окне *Функция*. Добавить можно любой объект (линию, сплайн или аналитическую функцию) из списка, который появляется в контекстном меню (Рис. 17). При выборе объекта «Линия» откроется диалоговое окно для ввода координат добавляемого объекта (Рис. 18).

Для задания линии достаточно ввести координаты двух точек. При вводе последующего участка линия будет присоединена к предыдущему и необходимо ввести только координаты конечной точки в полях ввода «До». После нажатия кнопки «ОК» добавляемый отрезок отобразится в поле редактора функции (Рис. 19), а сведения о нем будут добавлены в таблицу окна Φ ункция. Последовательно задайте три линии (Рис. 16): от (0; 1) до (0,25; 1); от (0,25; 1) до (0,25; -1); от (0,25; -1); от (0,25; -1);

Линия

После задания всех участков графика нажмите кнопку 🗹 редактора функций (Рис. 19).

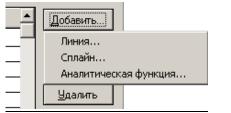


Рис. 17 Контекстное меню

Добавить...

жция... У коодината У координата
От О. 1
До 0.25 11

ТНОЕ МЕНЮ

Рис. 18 Диалоговое окно Линия.

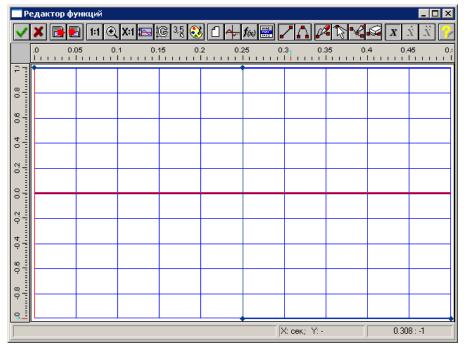


Рис. 19 График действия силы трения от времени.

Рассмотрим задание графика силы сопротивления. Выберете в окне (Рис. 14) загружение **Fc3** и нажмите кнопку «Задать график». При этом загрузится редактор функций (Рис. 15). График силы сопротивления состоит из трех участков – двух линий и аналитической функции (Рис. 20).

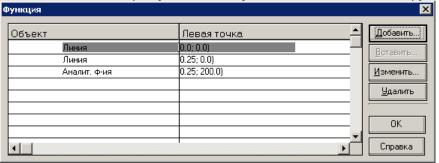


Рис. 20 Диалоговое окно Функция с участками графика.

Задание графика осуществляется в пределах поля редактора функций. Команда **Пределы** вызывается диалоговое окно, в котором необходимо задать горизонтальные (по X) и вертикальные (по Y) пределы графика (Рис. 21).

Нажав кнопку **Таблица** вызовите окно «Функция». В появившемся окне нажмите кнопку «Добавить – Линия...». Последовательно задайте две линии: от (0; 0) до (0,5; 0); от (0,5; 0) до (0,5; 200). Затем выберете «Добавить – Аналитическая функция...». В поле диалогового окна введите функцию (Рис. 22) и границы участка по X. Данная аналитическая функция получена аппроксимацией графика задания.

График отобразится в поле редактора функции (Рис. 23). Для подтверждения ввода графика нажмите

кнопку 🗸 редактора функций.

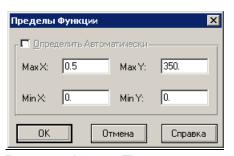
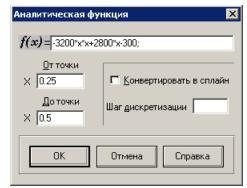



Рис. 21 Диалоговое окно

<u>Рис. 22 Ввод аналитической</u> функции.

Пределы.

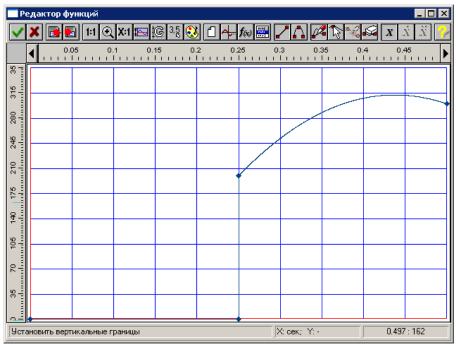
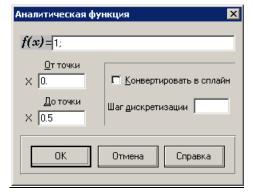



Рис. 23 График действия силы сопротивления от времени.

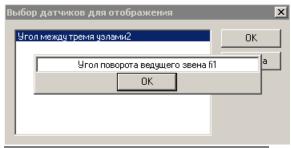
Для корректной совместной работы нагрузок следует задать графики для загружений «G» и «Комбинация загружений».

Удобно задать график аналитической функцией, нажав кнопку f(x) на панели редактора функций. В окне (Рис. 24) ведите f(x) = 1 и интервал по X (0... 0.5).

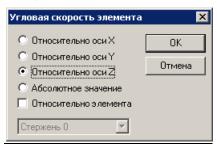
<u>Рис. 24 Задание аналитической функции.</u>

8. Установка датчиков и подключение их к мониторам

8.1. Датчик угла поворота ведущего звена


Чтобы установить угловой датчик между узлами 1-0-2 необходимо, прежде всего, последовательно выбрать требуемые узлы. Активируйте команду Выбор и укажите последовательно узел 1, узел 0 и узел 2, удерживая нажатой клавишу Shift. Далее нажмите кнопку Датчик угла поворота панели инструментов Датчики и мониторы.

Для создания монитора для датчика нажмите кнопку панели инструментов Датчики и мониторы. Затем в диалоговом окне (Рис. 25) необходимо выбрать датчик и нажать кнопку «Ок». При этом система предложит ввести название графика.


Теперь зададим датчик угла поворота φ_2 для шатуна. Для задания данного датчика следует последовательно выделить узлы 0-2-1 и нажать кнопку 2 Датчик угла поворота.

После задания датчика создайте монитор. Введите название монитора «Угол поворота звена шатуна, fi2».

Для задания датчиков угловой скорости ω_2 , выделите один из стержней шатуна и нажмите кнопку **Датчик угловой скорости**. В диалоговом окне (Рис. 26) отметьте направление «Относительно оси Z».

<u>Рис. 25 Задание монитора</u> датчика угла.

<u>Рис. 26 Задание датчика</u> угловой скорости.

Датчик углового ускорения ε_2 задается аналогично датчику угловой скорости ω_2 с использованием команды Датчик углового ускорения. С помощью команды Создать монитор графиков подключите датчики к мониторам, используя в качестве названия графиков «Угловая скорость шатуна, w2» и «Угловое ускорение шатуна, eps2» соответственно.

8.2. Датчики перемещения, скорости и ускорения ползуна

Чтобы установить датчик перемещения необходимо, прежде всего, выбрать требуемый узел. Нажмите кнопку Выбор панели инструментов Нарисовать и укажите мышью узел 2 ползуна. Далее нажмите кнопку Датчик смещения угла панели инструментов Датчики и мониторы. В появившемся диалоговом окне (Рис. 27) отметьте «По оси X» и нажмите кнопку «Ок».

Для узла **2** установите аналогично датчики скорости и ускорения используя команды **Датчик Скорости** и **Датчик ускорения** соответственно.

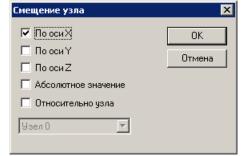
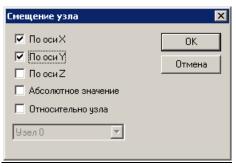
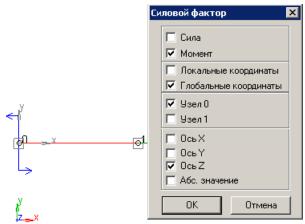



Рис. 27 Задание датчика

перемещения

С помощью команды **Создать монитор графиков** подключите датчики к мониторам, используя в качестве названия графиков «Смещение ползуна, Хв», «Скорость ползуна, Vв» и «Ускорение ползуна, ав» соответственно.

Для центра шатуна — узла 3 установите датчики смещений, скоростей и ускорений по осям X и Y (Рис. 28). С помощью команды Создать монитор графиков в списке выберете два датчика удерживая нажатой клавишу Shift для подключения к одному монитору (Рис. 29). Названия графиков — «Смещение шатуна Xs, Смещение шатуна Ys», «Скорость шатуна Vxs, Скорость шатуна Vys» и «Ускорение шатуна ахs, Ускорение шатуна ауs» соответственно.


<u>Рис. 28 Задание датчика</u> перемещения.

<u>Рис. 29 Задание мониторов</u> датчиков.

8.3. Датчик уравновешивающего момента

Для задания датчика уравновешивающего момента необходимо выделить ведущее звено и нажать кнопку **Датчик узловых усилий**. При этом на расчетной модели отобразится локальная система координат стержня. Задайте параметры узлового усилия в диалоговом окне (Рис. 30). Узлу 0 соответствует начало локальной системы координат.

<u>Рис. 30 Задание датчика</u> уравновешивающего момента.

8.4. Датчики сил

Для задания датчиков силы F_{21} выделите стержень шатуна и нажмите кнопку узловых усилий. При этом на расчетной модели отобразится локальная система координат стержня. Задайте параметры узлового усилия в диалоговом окне (Рис. 31). Узлу 0 соответствует начало локальной системы координат.

С помощью команды Создать монитор графиков подключите датчики Fx_{21} и Fy_{21} к одному монитору, используя в качестве названия «Fx21, Fy21».

Задание датчиков и мониторов для силы F_{γ_3} аналогично.

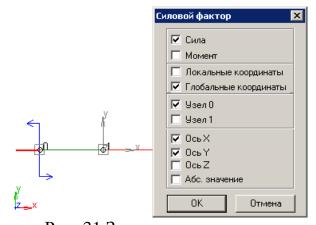


Рис. 31 Задание датчика силы.

Все датчики отображаются на модели (Рис. 32). Для просмотра всех датчиков и мониторов воспользуйтесь командой **Список датчиков и мониторов** (Рис. 33).

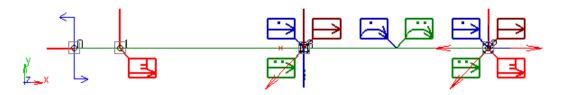


Рис. 32 Общий вид модели с установленными датчиками.

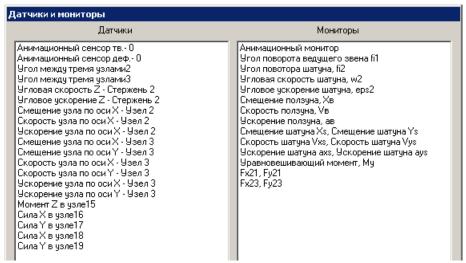
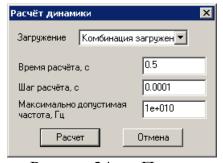



Рис. 33 Список датчиков и мониторов.

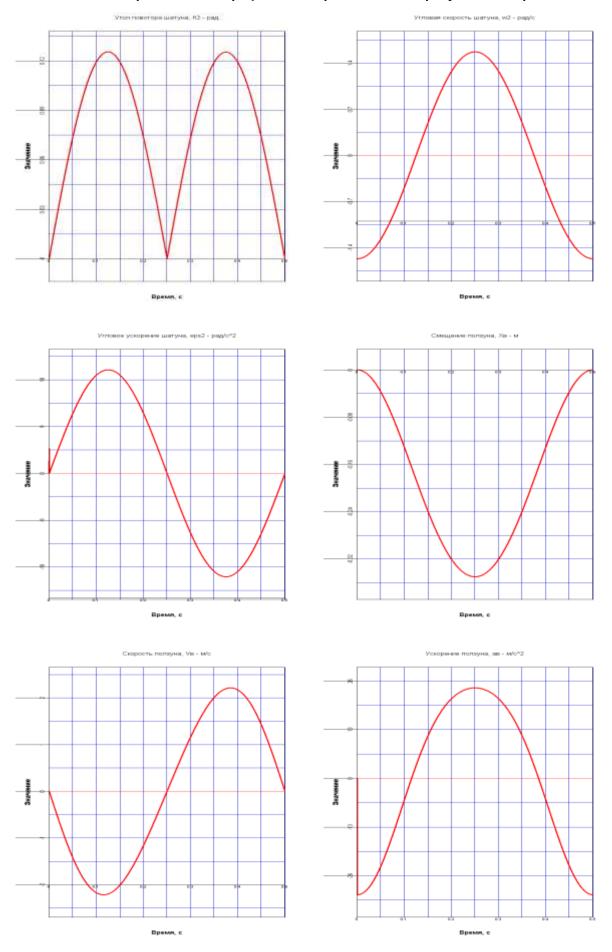
9. Расчет

Перед выполнением расчета с помощью команды **Единицы** выберете единицы для отображения на графиках: угол [град], сила [H], момент [H*м].

<u>Рис.</u> 34 <u>Параметры</u> расчета.

10. Результаты расчета

Результаты расчета доступны непосредственно после завершения расчета и представлены в виде графиков созданных мониторов. Для сохранения расчетной модели механизма и результатов расчета воспользуйтесь командой меню Файл/Сохранить (Ctrl+S). При повторном открытии сохраненного файла графики доступны после нажатия кнопки Результаты панели инструментов Датчики и мониторы.


Графики зависимостей кинематических и динамических параметров удобнее выводить от времени, поэтому представлена таблица соответствия времени и угла поворота ведущего звена:

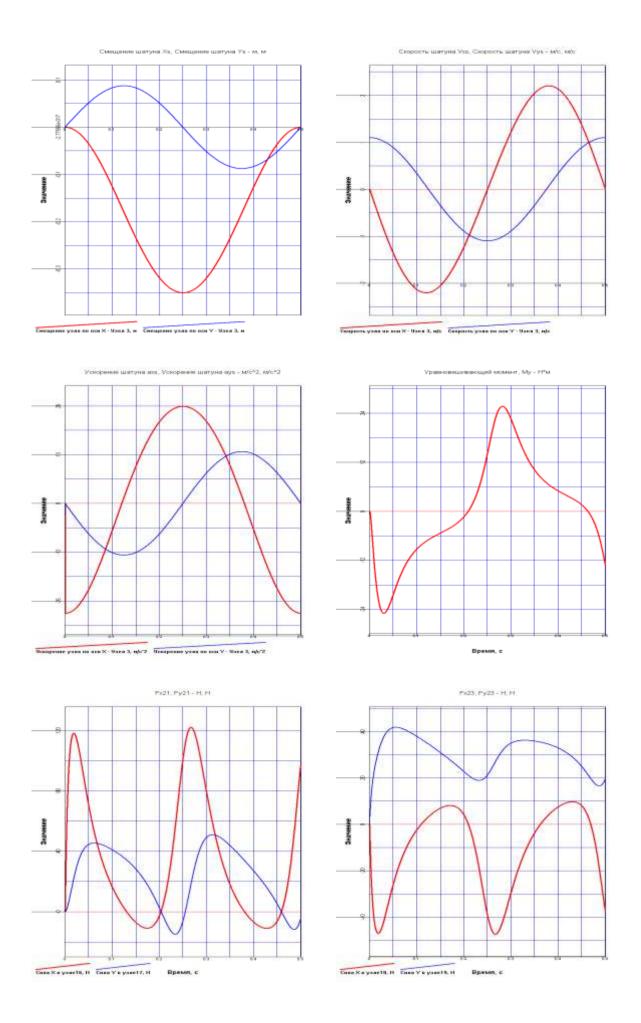
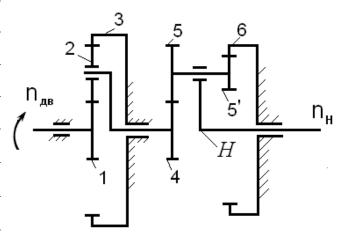
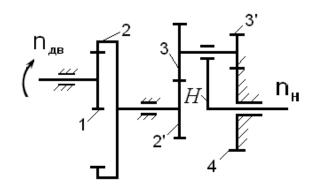
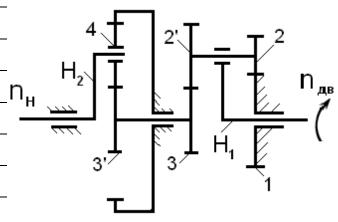

$$arphi_{
m l}\!=\omega_{
m l}t=rac{\pi\!n_{
m l}}{30}\,t$$
 , откуда $\,t=rac{30}{\pi\!n_{
m l}}arphi_{
m l}$

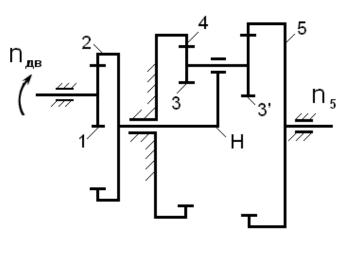
Таблица соответствия угла поворота ведущего звена и времени движения (при $n_1 = 120$ об/мин.)

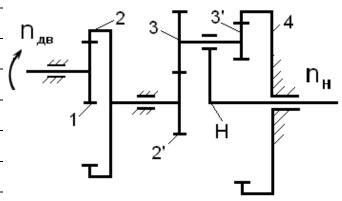

Угол, град	0	45	90	135	180	225	270	315	360
Время, с	0	0.0625	0.125	0.1875	0.25	0.3125	0.375	0.4375	0.5

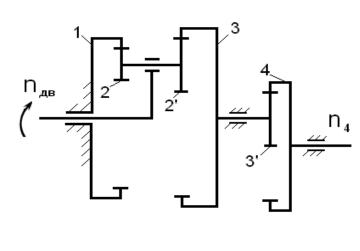
Приложение – графическое представление результатов расчета



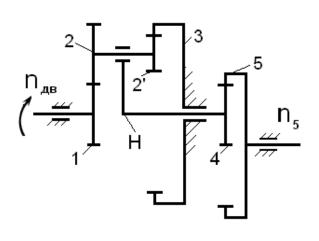

№ п.п.	<i>п</i> _{дв} об/мин	<i>n</i> _Н об/мин	Модуль, мм
1030	8000	90	7
1031	7000	80	7
1032	6000	70	6
1033	5000	60	6
1034	4500	55	8
1035	4000	45	7
1036	3500	40	8
1037	3000	32	7
1038	7500	80	7
1039	6900	70	8


$\mathcal{N}_{\underline{0}}$	$n_{_{ m JB}}$	n_{H}	Модуль,
П.П.	об/мин	об/мин	MM
1040	20000	180	7
1041	21000	170	8
1042	25000	210	6
1043	24000	220	6
1044	22000	210	5
1045	23000	210	4
1046	19000	230	7
1047	21000	250	8
1048	25000	230	6
1049	24000	210	7

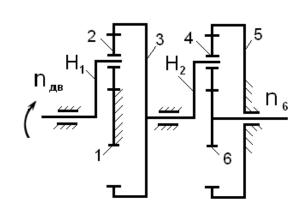

$\mathcal{N}_{\underline{0}}$	$n_{_{ m JB}}$	$n_{ m H}$	Модуль,
П.П.	об/мин	об/мин	MM
1050	15000	200	2,5
1051	18000	120	3
1652	16000	150	3,5
1053	17000	110	4
1054	20000	90	4,5
1055	22000	170	5
1056	19000	70	5,5
1057	21000	130	6
1058	20000	140	7
1059	16000	190	8


$\mathcal{N}_{\underline{0}}$	$n_{_{ m JB}}$	n_5	Модуль,
П.П.	об/мин	об/мин	MM
1060	25000	410	4
106I	24000	370	4,5
1062	23000	330	5
1063	22000	270	5,5
1064	18000	230	4
1065	17000	210	5
1066	16000	130	3,5
1967	19000	170	4
1068	20000	110	4,5
1969	21000	190	5

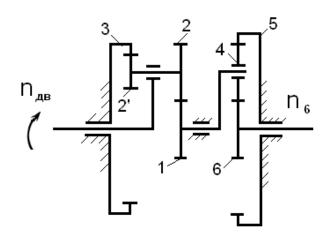
№ п.п.	<i>п</i> _{дв} об∕мин	<i>п</i> _Н об/мин	Модуль, мм
1070	1500	25	1,5
1071	2000	15	1,5
1072	2500	30	2
1073	3000	33	2,5
1074	2000	18	1,5
1075	1500	23	1
1076	2500	28	1,5
1077	3000	33	2
1078	2000	23	2,5
1079	2500	29	2



№	$n_{_{ m JB}}$	n_4	Модуль,
П.П.	об/мин	об/мин	MM
1080	20000	180	8
1081	21000	190	7
1082	22000	210	8
1083	25000	230	7
1084	21000	170	6
1085	22000	160	5
1086	23000	170	4
1087	24000	190	6
1088	20000	130	7
1089	23000	110	5

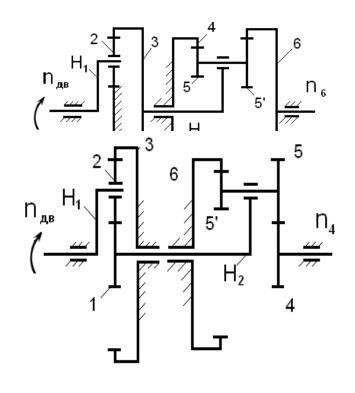

Задание №109

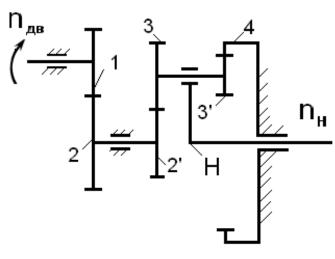
No	$n_{_{ m JB}}$	n_5	Модуль,
П.П.	об/мин	об/мин	MM
1090	22000	230	3
1091	21000	220	2
1092	19000	210	4
1093	18500	200	5
1094	19500	200	6
1095	21500	230	3
1096	22500	210	2
1097	17000	210	4
1098	17500	200	5
1099	21800	230	4


Задание №110

№ п.п.	<i>п</i> _{дв} об/мин	<i>n</i> ₆ об/мин	Модуль, мм
1100	40	200	3,5
1101	eo	200	2
1102	100	280	3
1103	75	300	4
1104	84	400	2,5
1105	28	100	3,5
1106	24	100	1,5
1107	56	200	4

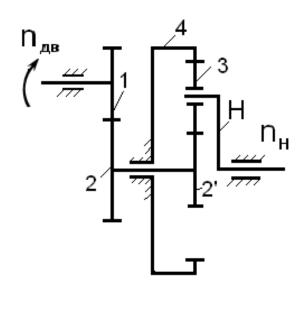
1108	180	600	5
1109	120	400	6


			T
$\mathcal{N}_{\underline{0}}$	$n_{_{ m JB}}$	n_6	Модуль,
П.П.	об/мин	об/мин	MM
1130	30	550	6
113I	20	380	5
1432	25	510	4
1133	30	370	3
1134	20	510	4
1135	30	530	2
1136	50	670	5
1137	40	630	6
1138	45	690	7
1139	20	370	3

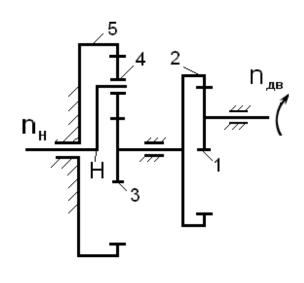

№ п.п.	<i>п</i> _{дв} об/мин	n_6 об/мин	Модуль, мм
1140	50	140	7
1141	40	130	8
1142	55	140	6
1143	50	130	4
1144	60	160	5
1145	70	170	3
1146	60	130	4
1147	70	190	6

1148	60	140	7
1149	55	160	5

No	$n_{_{ m JB}}$	n_4	Модуль,
П.П.	об/мин	об/мин	MM
1150	10	130	2
1151	5	100	2,5
1152	8	130	3
1153	20	240	3,5
1154	15	240	4,5
1155	10	190	4
1156	8	100	5
1157	5	90	6
1158	10	130	3
1159	15	180	4

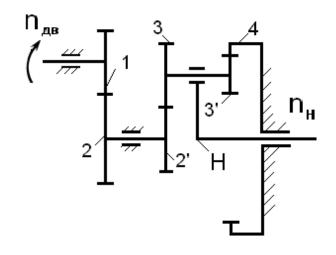

$N_{\overline{0}}$	$n_{_{ m JB}}$	$n_{ m H}$	Модуль,
П.П.	об/мин	об/мин	MM
1160	4500	300	4
1161	4500	225	5
1162	4000	160	4
1163	5000	150	3
1164	4000	170	4
1165	5500	200	2,5
1166	4500	170	3,5
1167	3000	150	5

1168	3500	170	4
1169	5200	200	6

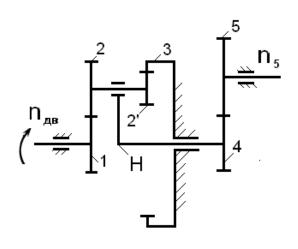

Задание №117

N_{Ω}	$n_{_{ m JB}}$	$n_{ m H}$	Модуль,
П.П.	об/мин	об/мин	MM
1170	4500	350	3,5
1171	4500	540	4
1172	4000	400	4
1173	4000	350	3
1174	5000	480	3
1175	5000	550	3
1176	4500	200	5
1177	5000	300	3,5
1178	6000	350	5
1179	6000	250	5

Задание №118

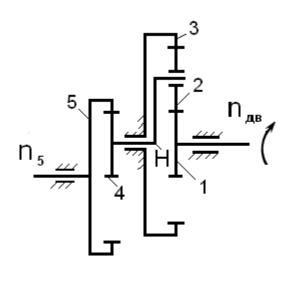

$\mathcal{N}_{\underline{0}}$	$n_{_{ m JB}}$	$n_{ m H}$	Модуль,
П.П.	об/мин	об/мин	MM
1180	12300	950	3
1181	14300	1100	3
1182	14700	1050	3
1183	13750	760	2,5
1184	14000	1000	2,5
1185	13200	1150	2,5
1186	13800	1100	2,5

1187	12870	1000	2
1188	15000	1000	3
1189	14000	950	3

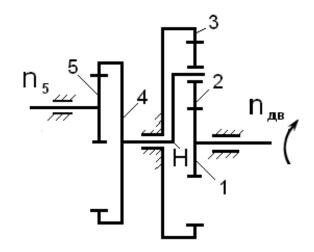

Задание №121

№	$n_{ m H}$	$n_{_{ m JB}}$	Модуль,
П.П.	об/мин	об/мин	MM
1210	30	2500	4,5
1211	32	2000	5
1212	35	3000	4
1213	30	3200	5
1214	50	4200	5,5
1215	50	4500	3
1216	50	4000	2,5
1217	35	2200	4
1218	62	5000	5
1219	55	4000	5

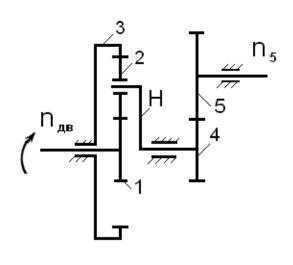
Задание №122


№ п.п.	<i>п</i> _{дв} об∕мин	<i>n</i> ₅ об∕мин	Модуль, мм
1220	800	22,5	3
1221	680	20,3	3
1222	980	22,0	3
1223	700	21,0	4
1224	400	22,0	2
1225	140	40,0	2
1226	450	20,0	2

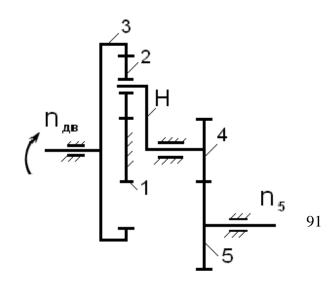
1227	840	24,0	4
1228	950	25,0	4
1229	360	16,3	3


Задание №123

No	$n_{_{\mathrm{JB}}}$	n_5	Модуль
п.п.	об/мин	об/мин	5
1230	950	50	4
1231	950	80	3,5
1232	950	100	3
1233	1440	45	4
1234	1950	65	3,5
1235	1440	55	5
1236	1440	35	2,5
1237	1440	32	2
1238	840	28	3
1239	840	35	5

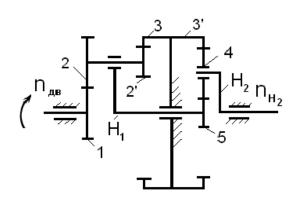

Задание №124

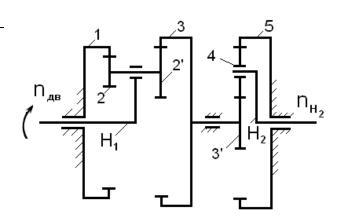
№ п.п.	<i>п</i> _{дв} об/мин	<i>n</i> ₅ об/мин	Модуль, мм
1240	9500	125	3
1241	14400	150	3
1242	1440	170	3,5
1243	14400	140	3
1244	9500	120	3
1245	15000	180	2,5
1246	20000	250	2,5



1247	18000	250	3
1248	10000	125	4
1249	8000	95	3

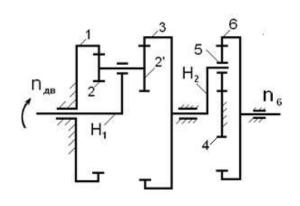
No	$n_{_{\mathrm{JB}}}$	n_5	Модуль, мм		
П.П.	об/мин	об/мин	IVIIVI		
1250	2950	70	4		
1251	2930	80	3		
1252	2920	85	4		
1253	2930	90	4		
1254	2950	100	3		
1255	2100	100	4		
1256	2400	200	4		
1257	1440	60	3		
1258	1440	40	3		
1259	2950	95	3		


$\mathcal{N}_{\underline{0}}$	$n_{_{ m JB}}$	n_5	Модуль,
П.П.	об/мин	об/мин	MM
1260	1500	170	4
1261	1500	160	4
1262	1950	200	3
1263	1950	250	2,5
1264	1950	200	3

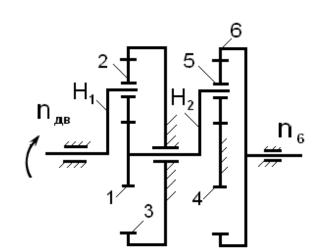

1265	940	100	2,5
1266	740	80	3
1267	740	100	3
1268	740	90	3
1269	740	110	3

Задание №129

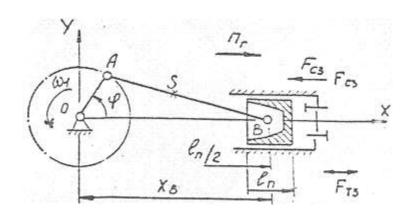
$N_{\underline{0}}$	$n_{_{ m JB}}$	$n_{ m H2}$	Модуль,
П.П.	об/мин	об/мин	MM
1290	14500	110	8
1291	14000	100	7,5
1292	16000	120	5,5
1293	17000	125	7
1294	15500	100	6,5
1295	I4500	110	6
1296	16500	125	6,5
1297	14000	115	7,5
1298	15000	130	8
1299	16500	110	5,5


$N_{\overline{0}}$	$n_{_{ m JB}}$	$n_{ m H2}$	Модуль,
П.П.	об/мин	об/мин	MM
1300	22000	50	5
1301	21000	40	6
1302	21500	45	5,5
1303	19000	35	6
1304	18200	35	5

1305	19800	40	4,5
1306	19500	50	3,5
1307	18500	40	4
1308	18400	50	4,5
1309	18600	60	5


Задание №141

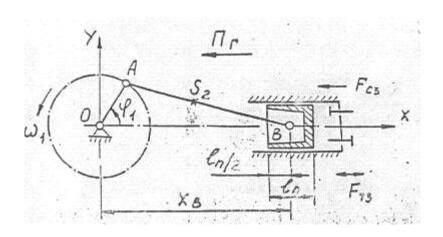
\mathcal{N}_{2}	$n_{_{ m JB}}$	n_6	Модуль,		
п.п.	об/мин	об/мин	MM		
1410	75	250	1,5		
1411	44	2			
1412	45	150	3		
1413	25	78	2,5		
1414	45	110	3,5		
14 15	65	210	1,5		
1416	30	90	2,5		
1417	15	45	2		
1418	20	60	3		
1419	50	180	4		


Задание №142

№	$n_{_{\mathrm{JB}}}$	n_6	Модуль,
П.П.	об/мин	об/мин	MM
1420	30	140	5
1421	46	230	6
1422	12	80	7
1423	25	120	4
1424	40	190	3
1425	25	130	2

1426	70	360	6
1427	45	220	4
1428	12	65	5
1429	20	90	7

Задание № 71. Механизм гидравлического насоса

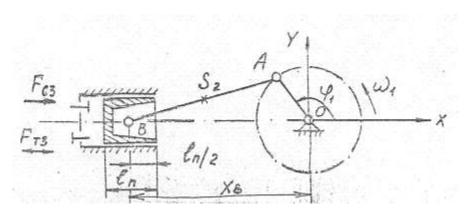

Поршневой гидравлический насос предназначен для напорного перемещения жидкости в гидросистеме.

№	Наименование	Обознач.	Danuany	Варианты									
п.п.	параметра	Ооознач.	Размерн.	0	1	2	3	4	5	6	7	8	9
1	Ход поршня	S_{B}	\mathcal{M}	0,048	0,055	0,06	0,06	0,064	0,064	0,075	0,075	0,08	0,08
2	Длина шатуна	ℓ_2	\mathcal{M}	0,15	0,15	0,155	0,160	0,170	0,175	0,180	0,190	0,190	0,20
3	Частота вращения кривошипа	n_1	об/мин	180	200	200	180	210	210	240	240	240	240
4	Масса шатуна	m_2	кг	0,4	0,4	0,45	0,5	0,55	0,55	0,6	0,6	0,7	0,7
5	Масса поршня	m_3	кг	0,6	0,6	0,68	0,75	0,85	0,85	0,95	0,95	1,1	1,1
6	Длина поршня	ℓ_Π	\mathcal{M}	0,03	0,03	0,035	0,035	0,04	0,04	0,045	0,045	0,50	0,50
7	Перегрузка горизонтальная	Π_{Γ}		2	2	1,5	1,5	1,0	1,0	2,0	2,0	3,0	3,0
8	Перегрузка вертикальная	Π_{B}											
9	Сила, действующая на поршень при X _B max при X _B ср при X _B min	F' _{c3} F'' _{c3} F''' _{c3}	Н Н Н	40 40 36	52 52 42	72 72 58	80 80 64	104 104 83	112 112 90	160 160 128	168 168 134	224 224 180	240 240 192
10	Число расчетных	N		24	24	24	24	24	24	24	24	24	24

TOHAL						1
IUICK						1

Диаметр цапф d=40 мм, коэффициенты трения $f_{\Pi}=0.2; \ f_{B}=0.25.$

Задание № 72. Механизм авиационного воздушного компрессора

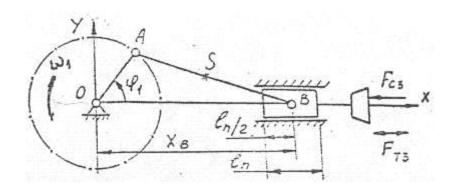

Поршневой компрессор одностороннего действия предназначен для сжатия и подачи воздуха под давлением.

No	Наименование	Обознач.	Размерн.					Вариа	нты				
п.п.	параметра	Ооознач.	газмерн.	0	1	2	3	4	5	6	7	8	9
1	Ход поршня	S_{B}	\mathcal{M}	0,022	0,024	0,026	0,028	0,03	0,032	0,034	0,036	0,036	0,04
2	Длина шатуна	ℓ_2	\mathcal{M}	0,067	0,07	0,08	0,09	0,07	0,08	0,07	0,08	0,08	0,09
3	Частота вращения кривошипа	n_1	об/мин	2000	2000	2000	2000	1800	1800	1800	1600	1600	1600
4	Масса шатуна	m_2	кг	0,05	0,05	0,055	0,055	0,06	0,06	0,07	0,07	0,08	0,08
5	Масса поршня	m_3	кг	0,075	0,075	0,08	0,08	0,09	0,09	0,1	0,1	0,12	0,12
6	Длина поршня	ℓ_{Π}	М	0,015	0,015	0,02	0,02	0,025	0,025	0,03	0,03	0,035	0,035
7	Перегрузка горизонтальная	Π_{Γ}		1	1	1	2	2	2	2,5	2,5	2,5	2,5
8	Перегрузка вертикальная	Π_{B}											

9	Сила, действующая на поршень при X _B max при X _B ср при X _B min	F' _{c3} F'' _{c3}	Н Н Н	240 240 192	240 240 192	320 320 256	360 360 288	400 400 320	440 440 352	480 480 384	560 560 448	600 600 480	640 640 512
10	Число расчетных точек	N		24	24	24	24	24	24	24	24	24	24

Диаметр цапф $\emph{d}=40$ мм, коэффициенты трения $\emph{f}_{\Pi}=0.2; \ \emph{f}_{B}=0.25.$

Задание № 73 Механизм воздушного компрессора кислородно-добывающей станции


Механизм предназначен для засасывания атмосферного воздуха к сжатия его до 18-22 МПа.

No	Наименование	Обознач.	Размерн.	Варианты											
п.п.	параметра	Ооознач.	т азмерн.	0	1	2	3	4	5	6	7	8	9		
1	Ход поршня	S_{B}	\mathcal{M}	0,070	0,075	0,080	0,080	0,085	0,09	0,09	0,095	0,095	0,10		
2	Длина шатуна	ℓ_2	\mathcal{M}	0,175	0,175	0,18	0,185	0,185	0,190	0,190	0,20	0,20	0,25		
3	Частота вращения кривошипа	n_1	об/мин	1200	1250	1200	1200	1250	1250	1200	1200	1200	1200		
4	Масса шатуна	m_2	кг	1,2	1,2	1,2	1,5	1,5	2,0	2,0	2,2	2,5	2,5		
5	Масса поршня	m_3	кг	1,8	1,85	1,9	2,2	2,25	3,0	3,0	3,3	3,75	3,75		
6	Длина поршня	ℓ_{Π}	М	0,05	0,05	0,05	0,06	0,06	0,06	0,07	0,07	0,07	0,08		

7	Перегрузка горизонтальная	Π_{Γ}											
8	Перегрузка вертикальная	Π_{B}											
9	Сила, действующая на поршень при X _B max при X _B ср при X _B min	F' _{c3} F'' _{c3} F''' _{c3}	Н Н Н	1 0,9 0,85	1 0,9 0,85	1,2 1,1 1,05	1,2 1,1 1,05	1,3 1,2 1,15	1,3 1,2 1,15	1,4 1,3 1,25	1,4 1,3 1,25	1,5 1,4 1,35	1,5 1,4 1,35
10	Число расчетных точек	N		24	24	24	24	24	24	24	24	24	24

Диаметр цапф d=40 мм, коэффициенты трения $f_{\Pi}=0.2; \ f_{B}=0.25.$

Задание № 74. Станок зубодолбежный

В кинематическую схему зубодолбежного станка входит кривошипно-ползунный механизм, преобразующий вращательное движение в возвратно-поступательное.

№	Наименование	Обознач.	Размерн.					Вариаг	НТЫ				
п.п.	параметра	Ооознач.	газмерн.	0	1	2	3	4	5	6	7	8	9
1	Ход поршня	S_{B}	\mathcal{M}	0,2	0,25	0,30	0,1	0,15	0,2	0,25	0,3	0,35	0,4
2	Длина шатуна	ℓ_2	\mathcal{M}	0,6	0,8	1,0	0,4	0,6	0,8	1,0	1,2	1,4	1,6
3	Частота вращения кривошипа	n_1	об/мин	90	100	110	120	120	80	90	100	120	120
4	Масса шатуна	m_2	кг	3,0	4,0	5,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0

5	Масса поршня	m_3	кг	4,5	6,0	7,5	3,0	4,5	6,0	7,5	9,0	10,5	12,0
6	Длина поршня	ℓ_Π	М	0,10	0,12	0,15	0,10	0,12	0,15	0,18	0,20	0,22	0,24
7	Перегрузка горизонтальная	Π_{Γ}											
8	Перегрузка вертикальная	Π_{B}											
9	Сила, действующая на поршень при X _B max при X _B ср при X _B min	F' _{c3} F'' _{c3} F''' _{c3}	Н Н Н	200 200 160	400 400 320	750 750 600	120 120 96	260 260 215	210 210 170	400 400 320	700 700 560	1400 1400 1100	1500 1500 1200
10	Число расчетных точек	N		24	24	24	24	24	24	24	24	24	24

Диаметр цапф d=40 мм, коэффициенты трения $f_{\rm II}=0.2; \ f_{\rm B}=0.25.$

Задание № 75. Станок зубодолбежный

В кинематическую схему зубодолбежного станка входит кривошипно-ползунный механизм, преобразующий вращательное движение в возвратно-поступательное

№	Наименование	Ofenney	Dongony		Варианты											
п.п.	параметра	Обознач.	Размерн.	0	1	2	3	4	5	6	7	8	9			

1	Ход поршня	$S_{\mathbf{B}}$	\mathcal{M}	0,15	0,6	0,6	0,15	0,15	0,4	0,6	0,2	0,25	0,3
2	Длина шатуна	ℓ_2	М	0,30	0,90	1,50	0,60	0,40	1,20	1,80	0,50	0,70	0,70
3	Частота вращения кривошипа	n_1	об/мин	60	70	90	90	100	100	80	80	120	120
4	Масса шатуна	m_2	кг	6,0	8,0	12,0	7,0	6,0	9,0	14,0	7,0	7,0	8,0
5	Масса поршня	m_3	кг	9,0	12,0	18,0	12,0	9,0	15,0	21,0	12,0	12,0	12,0
6	Длина поршня	ℓ_n	М	0,1	0,1	0,15	0,15	0,15	0,12	0,18	0,1	0,1	0,15
7	Перегрузка горизонтальная	Π_{Γ}											
8	Перегрузка вертикальная	Π_{B}											
9	Сила, действующая на поршень при X _B max при X _B ср при X _B min	F' _{c3} F'' _{c3} F''' _{c3}	Н Н Н	22 22 24	120 120 100	640 640 600	100 100 80	88 88 70	400 400 320	480 480 385	96 96 76	240 240 192	280 280 224
10	Число расчетных точек	N		24	24	24	24	24	24	24	24	24	24

Диаметр цапф d=40 мм, коэффициенты трения $f_{\Pi}=0.2;\ f_{B}=0.25,$ диаметр долбяка 0.28 мм.